首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two new polyhydroxysteroids and five new glycosides were isolated from the starfishCeramaster patagonicus and their structures were elucidated: 5α-cholestane-3β,6α,15β,16β,26-pentol, (22E)-5α-cholest-22-ene-3β,6α,8,15α,24-pentol, (22E)-28-O-[O-(2-O-methyl-β-d-xylopyranosyl)-(1→2)-β-d-galactofuranosyl]-24-hydroxymethyl-5α-cholest-22-ene-3β,4β, 6α,8,15β,16β,28-heptol (ceramasteroside C1), (22E)-28-O-[O-(2,4-di-O-methyl-β-d-xylopyranosyl)-(1→2)-β-d-galactofuranosyl]-24-hydroxymethyl-5α-cholest-22-ene-3β, 6α,8,15β,16β,28-hexol (ceramasteroside C2), (22E)-28-O-[O-methyl-β-d-xylopyranosyl)-(1→2)-β-d-galactofuranosyl]-24-hydroxymethyl-5α-cholest-22-ene-3β,6α,8,15β,16β 28-hexol (eramasteroside C3), (22E)-28-O-[O-(2-O-methyl-β-d-xylopyranosyl)-(1→2)-β-d-galactofuranosyl]-24-methyl-5α-cholest-22-ene-3β,4β,6α,8, 15β, 26-hexol (ceramasteroside C4), and (22E)-28-O-[O-(2-O-methyl-β-d-xylopyranosyl)-(1→2)-β-d-xylopyranosyl]-5α-cholest-22-ene-3β,6α,8,15β,24-pentol (ceramasteroside C5)). Three known polyhydroxysteroids (24-methylene-5α-cholestane-3β,6α,8,15β,16β,26-hexol, 5α-cholestane-3β,6α,8,15β,16β,26-hexol, and 5α-cholestane-3β,6β,15α,16β,26-pentol) were also isolated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 190–195, January, 1997.  相似文献   

2.
Triblock cooligomers consisting of tri-O-methyl-glucopyranosyl and unmodified glucopyranosyl residues, methyl 2,3,4,6-tetra-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-α-d-glucopyranoside (1: ABA triblock cooligomer; DS = 2.1) and β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-d-glucopyranose (2: BAB triblock cooligomer; DS = 1.8) were prepared. Compound 1 dissolved both in distilled water and chloroform but compound 2 dissolved in distilled water not in chloroform, though compounds 1 and 2 consist of 4 tri-O-methyl-glucopyranosyl and 2 unmodified anhydro glucopyranosyl units.  相似文献   

3.
Bioimaging is a key to understanding immune responses, cell differentiation, and development. Quantum dots (QDs) conjugated with monoclonal antibodies and other biomolecules are currently utilized for flow cytometry and immunohistochemistry, but monoclonal antibody–QD complexes are of limited use when cell surface markers are not available. In this study, we synthesized novel amphiphilic blockwise alkylated tetrasaccharides and developed a simple method for labeling a wide variety of live cells with organic QDs encapsulated with these carbohydrates. The novel amphiphilic blockwise alkylated tetrasaccharides were as follows: methyl β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-d-glucopyranoside (1), methyl β-d-galactopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-methyl-d-glucopyranoside (2), ethyl β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-ethyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-ethyl-d-glucopyranoside, (3), and ethyl β-d-galactopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-ethyl-β-d-glucopyranosyl-(1 → 4)-2,3,6-tri-O-ethyl-d-glucopyranoside (4). The newly synthesized blockwise alkylated tetrasaccharides spontaneously assembled into micelle-like particles, in which the hydrophobic moiety of the blockwise alkylated tetrasaccharides played an important role. They were less toxic to human cells than octyl β-d-glucopyranoside, a commonly used amphiphilic glucoside. Flow cytometry and confocal laser scanning microscopy revealed that the blockwise alkylated tetrasaccharide–organic QD complexes were stably attached to live cells. The affinity of compounds 1 and 2 to the live cell surface was slightly higher than that of compounds 3 and 4. Because the preparation of these carbohydrate–QD complexes is simple and does not require sophisticated equipment, and because the complexes can be autonomously attached to a wide spectrum of cell lines, they can be used as cell labeling reagents in biomedical studies.  相似文献   

4.
The leaves of Boscia senegalensis are traditionally used in West Africa in cereal protection against pathogens, pharmacologic applications, and food processing. Activities of α-amylase, β-amylase, exo-(1→3, 1→4)-β-d-glucanase, and endo-(1→3)-β-d-glucanase were detected in these leaves. The endo-(1→3)-β-d-glucanase (EC3.2.1.39) was purified 203-fold with 57% yield. The purified enzyme is a nonglycosylated monomeric protein with a molecular mass of 36 kDa and pI≥10.3. Its optimal activity occurred at pH 4.5 and 50°C. Kinetic analysis gave V max, k cat , and K m values of 659 U/mg, 395 s−1, and 0.42 mg/mL, respectively, for laminarin as substrate. The use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry and high-performance liquid chromatography revealed that the enzyme hydrolyzes not only soluble but also insoluble (1→3)-β-glucan chains in an endo fashion. This property is unusual for endo-acting (1→3)-β-d-glucanase from plants. The involvement of the enzyme in plant defense against pathogenic microorganisms such as fungi is discussed.  相似文献   

5.
Mixtures of diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides have been found to be amphiphilic, as reported before. In order to clarify their accurate amphiphilic property, diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides with monodispersity, methyl β-d-glucopyranosyl-(1→4)-2,3,6–tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6–tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-d-glucopyranoside (1, pentamer), methyl β-d-glucopyranosyl-(1→4)- β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-d-glucopyranoside (2, hexamer), and methyl β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-β-d-glucopyranosyl-(1→4)- 2,3,6-tri-O-methyl-d-glucopyranoside (3, trimer) were synthesized independently. These compounds had higher surface activities compared to the mixture of diblock co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides and commercially available methylcellulose (MC) SM-4. This paper describes the methods of synthesis of these compounds, and the influence of amphiphilic character on their surface activity. A new class of carbohydrate-based nonionic surfactant without long alkyl chain was discovered.  相似文献   

6.
Block synthesis of a fully benzoylated derivative of the pentasaccharide α-d-Manp-(1→3)-α-d-Manp-(1→2)-α-d-Manp-(1→2)-α-d-Manp-(1→2)-α-d-Manp-SCH2CH2CO2Me, the glycoside of the repeating unit of the O-antigenic polysaccharide of the bacterium Klebsiella pneumoniae O3, was performed.  相似文献   

7.
2-Aminoethyl 3,6-di-O-sulfo-β-D-glucopyranosyl-(1→3)-β-D-galactopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside, which is the sulfo-mimetic of the antigenic trisaccharide HNK-1, and the corresponding monosulfates, viz., 2-aminoethyl 3-O-sulfo-and 2-aminoethyl 6-O-sulfo-β-D-glucopyranosyl-(1→3)-β-D-galactopyranosyl-(1→ 4)-2-acetamido-2-deoxy-β-D-glucopyranosides, were synthesized. 2-Azidoethyl 2,4-di-O-benzoyl-β-D-glucopyranosyl-(1→3)-2,4,6-tri-O-benzoyl-β-D-galactopyranosyl-(1→ 4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside served as the common precursor for the sulfated trisaccharides. This compound was synthesized according to the [2+1] pattern from monosaccharidic precursors: 3,6-di-O-acetyl-2,4-di-O-benzoyl-D-glucopyranosyl trichloroacetimidate, allyl 2-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranoside, and 2-azidoethyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside. The structures of the glycosyl donors and glycosylation conditions were optimized for the efficient synthesis of the glucosyl-β-(1→3)-galactose disaccharide block and its subsequent transformation into the target trisaccharide sequence. Dedicated to Academician V. A. Tartakovsky on the occasion of his 75th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1593–1607, August, 2007.  相似文献   

8.

Abstract  

tert-Butyldimethylsilyl (4-O-acetyl-2-azido-3,6-di-O-benzyl-2-deoxy-β-d-glucopyranosyl)-(1 → 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranoside (Kawada and Yoneda [MOCHEM-D-09-00120], 2009), designed as a repeating disaccharide unit in a β-glucan having two different faces, was converted into a glycosyl donor and an acceptor. The glycosyl acceptor was glycosylated with the donor to afford a chito-tetrasaccharide derivative in good yield. Phthalimido and azido groups in the tetrasaccharide were successively converted into acetamido and free amino groups, and all other protecting groups were cleaved to obtain the chito-tetrasaccharide (2-amino-2-deoxy-β-d-glucopyranosyl)-(1 → 4)-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 4)-(2-amino-2-deoxy-β-d-glucopyranosyl)-(1 → 4)-2-acetamido-2-deoxy-d-glucopyranose.  相似文献   

9.
Comparison and characterization of polysaccharides from natural and cultured Cordyceps on the basis of their chemical characteristics such as glycosidic linkages were performed for the first time using saccharide mapping. The results showed that polysaccharides from most of the natural and cultured Cordyceps had similar responses to enzymatic digestion. These polysaccharides mainly contained (1→4)-β-D-glucosidic linkages, and (1→4)-α-glucosidic, (1→6)-α-glucosidic, 1,4-β-D-mannosidic, as well as (1→4)-α-D-galactosiduronic linkages also existed in some polysaccharides. Especially, natural and cultured Cordyceps polysaccharides could be discriminated on the basis of high performance liquid chromatography profiles of pectinase hydrolysates, which is helpful to control the quality of polysaccharides from Cordyceps.  相似文献   

10.
Two triterpenoid diglycosides of the cycloartane series were isolated from the terrestrial part ofThalictrum minus L. (Ranunculaceae). Genins of these glycosides are side-chain structural isomers—3-O-β-d-galactopyranosyl-29-O-β-d-glucopyranosyl-9β, 19-cyclo-20(S)-lanost-24(Z)-ene-3β, 16β, 22(S), 26, 29-pentaol and 3-O-β-d-galactopyranosyl-29-O-β-d-glucopyranosyl-9β, 19-cyclo-20(S)-lanost-25-ene-3β, 16β,22(S), 24ζ, 29-pentaol. The structures of these glycosides were established using 1D and 2D NMR spectroscopy and FAB mass spectrometry. For Part 9, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1434–1437, July, 1998.  相似文献   

11.
A new furostanol glycoside, named ophiopogonin J (1), was isolated from the fibrous root of Ophiopogon japonicas. The structure of the compound was established as (25R)-26-[(O-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranosyl)]-20α -hydroxyfurost-5, 22-diene-3-O-α-L-rhamnopyranosyl-(1 → 2)-[β-D-xylopyranosyl(1 → 4)]-β-D-glucopyranoside on the basis of spectroscopic methods, including HR-ESI-MS and 1D and 2D NMR experiments.  相似文献   

12.
1-O-β-d-Glucopyranosyl-d-mannitol, 1,6-di-O-glucopyranosyl-d-mannitol, 1-O-β-gentiobiosyl-d-mannitol, 1-O-β-gentiobiosyl-6-O-β-d-glucopyranosyl-d-mannitol, and 1-O-β-d-gentiotriosyl-d-mannitol were isolated from the brown seaweedChorda filum and the assignment of signals in their13C NMR spectra was performed. Comparative analysis of the oligosaccharide composition and the structure of laminarans from seven brown algae demonstrates that the oligosaccharides are not always fragments of the corresponding laminarans. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1817–1820, October, 1993.  相似文献   

13.

Abstract  

The stereospecific synthesis of a chitosan derivative repeating 2-azido-3,6-di-O-benzyl-2-deoxy-β-d-glucopyranosyl-(1 → 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-d-glucopyranose, which has two distinguishing faces, was achieved by polycondensation of the sole starting disaccharide, trichloroacetimidoyl 2-azido-3,6-di-O-benzyl-2-deoxy-β-d-glucopyranosyl-(1 → 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-d-glucopyranoside in a short and efficient way.  相似文献   

14.
From the terrestrial part ofThalictrum minus L. (Ranunculaceae) a novel triterpenoid diglycoside was isolated. The genin of this glycoside is a new cycloartane triterpenoid. The structure of the glycoside was established on the basis of 1D and 2D NMR spectroscopy and FAB mass spectrometry as 22S,25-epoxy-3-O-β-d-galactopyranosyl-29-O-β-d-glucopyranosyl-9β, 19-cyclo-20S-lanostane-3β,16β,24S,29-tetrol. For Part 10 see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 602–605, March, 1999.  相似文献   

15.
Dimethylsulfoxide-solubilized polysaccharides from delignified corn stover and aspen were characterized. The biomass was delignified by two different techniques; a standard acid chlorite and a pulp and paper QPD technique comprising chelation (Q), peroxide (P), and acid-chlorite (D). Major polysaccharides in all fractions were diversely substituted xylan. Xylan acetylation was intact after chlorite delignification and, as expected, xylan from QPD-delignified fraction was de-acetylated by the alkaline peroxide step. The study of DMSO-extractable xylans from chlorite-delignified biomass revealed major differences in native acetylation patterns between corn stover and aspen xylan. Xylan from cell walls of corn stover contains 2-O- and 3-O-mono-acetylated xylan and [MeGlcA-α-(1 → 2)][3-OAc]-xylp units. In addition, aspen xylan also contains 2,3-di-O-acetylated xylose. 1,4-β-d-xylp residues substituted with MeGlcA at O-2 position are absent in chlorite-delignified aspen xylan. Sugar composition in accord with NMR-spectroscopic data indicated that corn stover xylan is arabinosylated while aspen xylan is not. We have shown that corn stover xylan has similar structure with xylans from other plants of Poales order. No evidence was found to indicate the presence of 1,4-β-d-[MeGlcA-α-(1 → 2)][Ara-α-(1 → 3)]-xylp in corn stover xylan fractions.  相似文献   

16.
An α-l-arabinofuranosidase from Fusarium oxysporum F3 was purified to homogeneity by a two-step ion exchange intercalated by a gel filtration chromatography. The enzyme had a molecular mass of 66 kDa and was optimally active at pH 6.0 and 60°C. It hydrolyzed aryl α-l-arabinofuranosides and cleaved arabinosyl side chains from arabinoxylan and arabinan. There was a marked synergistic effect between the α-l-arabinofuranosidase and an endo-(1 →4)-β-d-xylanase produced by F. oxysporum in the extensive hydrolysis of arabinoxylan.  相似文献   

17.
A new steroid glycoside was isolated from leaves of Digitalis ciliata (Scrophulariaceae) by fractionation of the total extracted substances. Its structure was determined as (25R)-5α-spirostan-3β-ol 3-O-β-D-glucopyranosyl-(1→3)[β-D-fucopyranosyl-(1→2)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside based on chemical transformations, physical constants, and spectral data. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 135–137, March–April, 2007.  相似文献   

18.
Nine pure glycosides were isolated from total saponins of Cyclamen adzharicum Pobed. (Primulaceae). The total chemical structure of cyclamen F, 3β-O-[β-D-Xylp(1→2)]-[β-D-Glcp(1→2)]-(β-D-Glcp(1→4)-α-L-Arap)-16α-hydroxy-13,28-epoxy-30,30-dibutoxyolean, was elucidated using modern physicochemical and spectral methods (NMR, 1H, 13C, HMBC, HMQC, DEPT, COSY, MS). A glycoside with the cyclamen F chemical structure has not been reported and, therefore, is a new organic compound.  相似文献   

19.
The structures of five furostanol glycosides (1–5), of which the 26-O-β-D-glucopyranosyl-(25S),5α-furost20(22)-en-12-one-2α,3β,26-triol-3-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside (1) was new, from the leaves of Tribulus terrestris L. were established using chemical and NMR spectroscopic methods.  相似文献   

20.
Two new polar steroidal glycosides identified as sodium (20R,22E,24R,25S)-3-O-(β-d-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,6β,8,15α,26-pentol 26-sulfate (evasterioside A) and sodium (20R,22E)-24-O-(β-d-xylopyranosyl)-5α-cholest-22-ene-3β,6β,8,15α,24-pentol 3-sulfate (evasterioside B) were isolated from the Pacific starfish Evasterias retifera collected in the Sea of Japan. Five known compounds, viz., coscinasterioside B, aphelasterioside A, marthasterone 3-sulfate and (20R)-cholest-7-en-3β-ol and cholesterol sulfates, were identified. The structures of the new natural compounds were established using their 2D NMR and mass spectra and some chemical transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号