首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Sb adsorption process on the Si(1 1 1)–In(4×1) surface phase was studied in the temperature range 200–400 °C. The formation of a Si(1 1 1)–InSb (2×2) structure was observed between 0.5 and 0.7 ML of Sb. This reconstruction decomposes when the Sb coverage approaches 1 ML and Sb atoms rearrange to and (2×1) reconstructions; released In atoms agglomerate into islands of irregular shapes. During the phase transition process from InSb(2×2) to Sb (θSb>0.7 ML), we observed the formation of a metastable (4×2) structure. Possible atomic arrangements of the InSb(2×2) and metastable (4×2) phases were discussed.  相似文献   

2.
Microscopic topological and spectroscopic properties of MBE-grown GaAs c(4×4) surfaces without and with monolayer Si deposition were investigated by the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Empty state STM images on as-grown surface showed bright and dark cells, and they exhibited strong correlation with the spatial distribution of normal and anomalous conductance gaps of the STS spectra. Bias dependent STM images indicated presence of pinning areas with continuous space and energy distribution of surface gap states. By deposition of monolayer Si, dark areas reduced a great deal and the rate of finding normal STS spectra increased, indicating large reduction of surface states.  相似文献   

3.
To test the model that was originally proposed for the Si(103)1 × 1-Al facets and was later on tested with STM to be correct for the Ge(103)1 × 1-In facets, in the present paper we have studied the Si(103)1 × 1-In surface by means of the QKLEED/CMTA technique. A unit cell of the model consists of an indium atom, which sits in an adatom position and forms three sp2-like bonds with bulk silicon atoms, and a surface silicon atom with a dangling bond. The model has passed the QKLEED/CMTA test and the best parameters of it have been obtained. It has been noticed in the experiment that the clean Si(103) surface has a surprisingly high thermal stability.  相似文献   

4.
We have investigated the force interactions between the Si tip and the Si(100)2×1 reconstructed surface in the noncontact atomic-force microscopy (AFM) measurement. We observed two types of frequency shift curves without and with discontinuity, similar to the Si(111)7×7 surface. The image contrast changes drastically whether the frequency shift curve shows discontinuity or not. In the case of the frequency shift curves without discontinuity, the noncontact AFM images almost reflect the surface topography including dimers and adsorbates. In the case of the frequency shift curves with discontinuity, they reflect strongly the chemical reactivity of surface. Furthermore, in the case of the frequency shift curves without discontinuity, for the first time, the stabilize-buckling of dimers induced by a defect can be observed. This suggests that the force interactions during the noncontact AFM measurement hardly influence the surface dynamics.  相似文献   

5.
The role of kinetics in the superstructure formation of the Sb/Si(0 0 1) system is studied using in situ surface sensitive techniques such as low energy electron diffraction, Auger electron spectroscopy and electron energy loss spectroscopy. Sb adsorbs epitaxially at room-temperature on a double-domain (DD) 2 × 1 reconstructed Si(0 0 1) surface at a flux rate of 0.06 ML/min. During desorption, multilayer Sb agglomerates on a stable Sb monolayer (ML) in a DD (2 × 1) phase before desorbing. The stable monolayer desorbs in the 600–850 °C temperature range, yielding DD (2 × 1), (8 × 4), c(4 × 4), DD (2 × 1) phases before retrieving the clean Si(0 0 1)-DD (2 × 1) surface. The stable 0.6-ML (8 × 4) phase here is a precursor phase to the recently reported 0.25-ML c(4 × 4) surface phase, and is reported for the first time.  相似文献   

6.
F. Palmino  E. Duverger   《Surface science》2009,603(17):2771-2776
In this study we employ a state-of-the-art pseudopotential method to perform local density of states (LDOS) calculations of n × 1 (n = 5, 7) and (8 × 2) reconstructions induced by the adsorption of rare-earth samarium (RE) in the submonolayer range. We conducted a full comparison between images from scanning tunneling microscopy (STM) and theoretical LDOS. Images taken of both filled and empty states show the effects induced by honeycomb chains and Seiwatz chains. We conclude that LDOS calculations are consistent with the assignment of features observed experimentally by STM.  相似文献   

7.
F. Bastiman  A.G. Cullis  M. Hopkinson   《Surface science》2009,603(16):2398-2402
Atomic resolution scanning tunnelling microscopy (STM) has been used to study in situ the As-terminated reconstructions formed on GaAs(0 0 1) surfaces in the presence of an As4 flux. The relationship between the As-rich (2 × 4) and c(4 × 4) surfaces is observed throughout the gradual evolution of the reconstruction transformation. The results suggest that during the initial stage of the transformation, Ga-rich As-terminated variations of the c(4 × 4) form in order to accommodate excess mobile Ga produced by pit formation. These transient structures later planarize, as excess Ga is incorporated at step/island edges. Successive imaging of the same sample area during As4 irradiation allows point-by-point adatom binding to be analysed in a way inaccessible to MBE–STM systems relying on sample quenching and transfer.  相似文献   

8.
Li adsorption at extremely low coverages on the “metallic” Si(1 1 1)-(7 × 7) surface has been experimentally studied recently by β-NMR experiments. Instead of increasing linearly with the sample temperature, as expected for a metallic system, the relaxation rate α = 1/T1 is almost constant in between 50 K and 300 K sample temperature and rises Arrhenius like above. In order to understand this behaviour in a transparent way a closed form analysis is presented using rectangular density of states distributions. The almost temperature independent relaxation rate below 300 K points to an extremely localized and thus narrow band (width about 10 meV) which pins the Fermi energy. Because of the steeply rising relaxation rate beyond 300 K it is located energetically within a gap (about 380 meV wide) in between a lower filled and an upper empty (Hubbard) band. In dynamical mean field theories based on Hubbard Hamiltonians this kind of density of states is typical for correlated electron systems close to a Mott-Hubbard metal-insulator transition.  相似文献   

9.
We report on the formation of a stable (4 × 1) reconstruction of the chalcopyrite CuGaSe2(0 0 1) surface. Using Ar+ ion-bombardment and annealing of epitaxial CuGaSe2 films grown on GaAs(0 0 1) substrates it was possible to obtain flat, well-ordered surfaces showing a clear (4 × 1) reconstruction. The cleanliness and structure were analyzed in situ by AES and LEED. AES data suggest a slight Se-enrichment and Cu-depletion upon surface preparation. Our results demonstrate that (0 0 1) surfaces of the Cu-III-VI2(0 0 1) material can show stable, unfacetted surfaces.  相似文献   

10.
11.
D2 temperature-programmed desorption (TPD) was used to probe the structure of the Si(011)-(16 × 2) surface. Deuterium was adsorbed at 200°C to coverages θD ranging up to complete saturation (approximately 1.1 ML) and the sample heated at 5°C s−1. TPD spectra exhibited three second-order desorption peaks labelled β2, β*1 and β1 centered at 430, 520 and 550°C. Of the proposed models for the Si(011)-(16 × 2) reconstruction, the present TPD results as a function of θD provide support for the adatom/dimer model with the β2 peak assigned to D2 desorption from the dihydride phase, while the β*1 and β1 peaks arise from adatom and surface-atom monohydride phases.  相似文献   

12.
We determined surface structures in a structural sequence c(2 × 2)→(4 × 4)→(5 × 5) formed on Ni(001) at 370 K with increasing Li coverage by a dynamical low-energy electron diffraction analysis. The (4 × 4) and (5 × 5) are complex surface-structures involving restructuring of substrate surface atoms, and are analogous to the previously determined (3 × 3) and (4 × 4) structures formed for Li/Cu(001). The c(2 × 2) at low coverages is a Li adlayer, so a change of the adsorption mode from adlayer- to restructuring-type is evidenced in the course of increasing coverage within a monolayer range.  相似文献   

13.
The orientational phase diagram and morphology of the Eu-adsorbed Si(1 0 0) surface miscut by 0.4° have been studied by low-energy electron diffraction and scanning tunneling microscopy. We demonstrate that the original double-domain configuration with single-layer steps on the Si(1 0 0) substrate can be drastically broken at 0.4 monolayer (ML) of Eu. At this coverage, the ordered domain pattern formed by topographically non-equivalent terraces with Eu-induced 2 × 3 and “2 × 1” (so-called “wavy” structure) reconstructions is found, while no orthogonal 3 × 2 and “1 × 2” domains are observed. A model of the single-domain surface is proposed. The origin of the double- to single-domain transition found for the Eu/Si(1 0 0) system is discussed.  相似文献   

14.
The first stages of acetylene reaction with the Si(1 1 1)7 × 7 reconstructed surface kept at 600 °C are studied by recording scanning tunneling microscopy (STM) images during substrate exposure at a C2H2 pressure of 2 × 10−4 Pa (2 × 10−2 mbar). We observed the progressive substitution of the 7 × 7 reconstruction with a carbon induced Si(1 1 1)√3×√3R30° reconstruction characterized by an atomic distance of 0.75 ± 0.02 nm, very close to that of the silicon 7 × 7 adatoms. This means that a carbon enrichment of the silicon outermost layers occurs giving rise to the formation of a Si-C phase different from the √3×√3R30° reconstruction typical of Si terminated hexagonal SiC(0 0 0 1) surface with an atomic distance of 0.53 nm. To explain STM images, we propose a reconstruction model which involves carbon atoms in T4 and/or S5 sites, as occurring for B doped Si(1 1 1) surface. Step edges and areas around the silicon surface defects are the first regions involved in the reaction process, which spreads from the upper part of the step edges throughout the terraces. Step edges therefore, progressively flakes and this mechanism leads, for the highest exposures, to the formation of large inlets which makes completely irregular the straight edge typical of the Si(1 1 1)7 × 7 terraces. These observations indicate that there occurs an atomic diffusion like that driving the meandering effect. Finally, the formation of a few crystallites is shown also at the lowest acetylene exposures. This is the first STM experiment showing the possibility to have carbon incorporation in a Si(1 1 1) matrix for higher amounts than expected, at least up to 1/6 of silicon atomic layer.  相似文献   

15.
K. Hayashi  A. Kawasuso 《Surface science》2006,600(19):4426-4429
We have investigated the feature of reflection high-energy positron diffraction (RHEPD) pattern from a Si(1 1 1)-(7 × 7) surface. The RHEPD pattern observed in the total reflection condition is quite different from the conventional reflection high-energy electron diffraction (RHEED) pattern. This fact is attributed to the different penetration depths of positrons and electrons. We show that the intensity distribution of RHEPD pattern is reproduced considering the dimer-adatom-stacking fault (DAS) model with optimized atomic positions and scattering potentials of adatoms and rest atoms.  相似文献   

16.
The influence of substrate orientation on the morphology of graphene growth on 6H-SiC(0 0 0 1) was investigated using low-energy electron and scanning tunneling microscopy (LEEM and STM). Large area monolayer graphene was successfully furnace-grown on these substrates. Larger terrace widths and smaller step heights were obtained on substrates with a smaller mis-orientation from on-axis (0.03°) than on those with a larger (0.25°). Two different types of a carbon atom networks, honeycomb and three-for-six arrangement, were atomically resolved in the graphene monolayer. These findings are of relevance for various potential applications based on graphene-SiC structures.  相似文献   

17.
Monolayer Ga adsorption on Si surfaces has been studied with the aim of forming p-delta doped nanostructures. Ga surface phases on Si can be nitrided by N2+ ion bombardment to form GaN nanostructures with exotic electron confinement properties for novel optoelectronic devices. In this study, we report the adsorption of Ga in the submonolayer regime on 7 × 7 reconstructed Si(1 1 1) surface at room temperature, under controlled ultrahigh vacuum conditions. We use in-situ Auger electron spectroscopy, electron energy loss spectroscopy and low energy electron diffraction to monitor the growth and determine the properties. We observe that Ga grows in the Stranski-Krastanov growth mode, where islands begin to form on two flat monolayers. The variation in the dangling bond density is observed during the interface evolution by monitoring the Si (LVV) line shape. The Ga adsorbed system is subjected to thermal annealing and the residual thermal desorption studied. The difference in the adsorption kinetics and desorption dynamics on the surface morphology is explained in terms of strain relaxation routes and bonding configurations. Due to the presence of an energetic hierarchy of residence sites of adatoms, site we also plot a 2D phase diagram consisting of several surface phases. Our EELS results show that the electronic properties of the surface phases are unique to their respective structural arrangement.  相似文献   

18.
In this work we employ the state-of-the-art pseudopotential method, within a generalized gradient approximation to the density functional theory, combined with a recently developed method for the calculation of HREELS spectra to study a series of different proposed models for carbon incorporation on the silicon (0 0 1) surface. A fully discussion on the geometry, energetics and specially the comparison between experimental and theoretical STM images and electron energy loss spectra indicate that the Si(1 0 0)-c(4 × 4) is probably induced by Si-C surface dimers, in agreement with recent experimental findings.  相似文献   

19.
V. M. Bermudez   《Surface science》2003,540(2-3):255-264
Cycloaddition reactions between 1,3-butadiene and the C-terminated SiC(1 0 0)-c(2 × 2) surface have been addressed using quantum-chemical methods. The c(2 × 2) structure consists of ---CC--- bridges between underlayer Si atoms which themselves form Si---Si bonds. Of various possible reaction products, the one formed by a [2 + 4] reaction with the ---CC--- bridge (giving a species resembling 1,4-cyclohexadiene) is the lowest in energy. Density functional calculations for the bare c(2 × 2) surface, using a cluster model with mechanical embedding, gave good agreement with structural parameters obtained in previous fully ab initio studies. Similar calculations for the cycloaddition product and for the transition state gave a reaction energy of −50.3 kcal/mol and an activation energy of +6.1 kcal/mol to form a planar ring structure lying normal to the surface. Detailed results for the frequency and infrared polarization behavior of adsorbate vibrational modes have also been obtained.  相似文献   

20.
Using scanning tunneling microscopy (STM) and time of flight secondary ion mass spectrometry (TOF/SIMS), we observed radiation effects on a Si(1 1 1)-(7 × 7) surface in the collision of a single highly charged ion (HCI) with a charge state q up to q = 50. The STM observation with atomic resolution revealed that a nanometer sized crater-like structure was created by a single HCI impact, where the size increased rapidly with q. The secondary ion yields also increased with q in which multiply charged Si ions (Sin+) were clearly observed in higher q HCI-collisions. The sputtering mechanism is briefly discussed, based on the so-called Coulomb explosion model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号