共查询到4条相似文献,搜索用时 0 毫秒
1.
随着场效应晶体管(MOSFET)器件尺寸的进一步缩小和器件新结构的引入, 学术界和工业界对器件中热载流子注入(hot carrier injections, HCI)所引起的可靠性问题日益关注. 本文研究了超短沟道长度(L=30–150 nm)绝缘层上硅(silicon on insulator, SOI)场效应晶体管在HCI应力下的电学性能退化机理. 研究结果表明, 在超短沟道情况下, HCI 应力导致的退化随着沟道长度变小而减轻. 通过研究不同栅长器件的恢复特性可以看出, 该现象是由于随着沟道长度的减小, HCI应力下偏压温度不稳定性效应所占比例变大而导致的. 此外, 本文关于SOI器件中HCI应力导致的退化和器件栅长关系的结果与最近报道的鳍式场效晶体管(FinFET)中的结果相反. 因此, 在超短沟道情况下, SOI平面MOSFET器件有可能具有比FinFET器件更好的HCI可靠性. 相似文献
2.
高功率微波(HPM)通过使半导体器件特性退化和功能失效,从而干扰电子系统无法正常工作. 针对金属氧化物半导体(MOS)器件的HPM效应, 建立了高功率微波引起n型金属氧化物半导体场效应晶体管(nMOSFET)特性退化的物理过程与模型. 器件仿真结果中nMOSFET的输出特性曲线显示栅极注入HPM引起器件特性退化,包括阈值电压正向漂移、 饱和电流减小、跨导减小等;结合物理模型分析可知, HPM引起的高频脉冲电压使器件进入深耗尽状态, 热载流子数目增多,热载流子效应导致器件特性退化. MOS器件的HPM注入实验结果显示,器件特性曲线、器件模型参数变化趋势与仿真结果一致, 验证了HPM引起nMOSFET特性退化的物理过程与模型. 相似文献
3.
Hot carrier degradation and a new lifetime prediction model in ultra-deep sub-micron pMOSFET 下载免费PDF全文
The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal-oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively charged interface states is the predominant mechanism in the case of the ultra-deep sub-micron pMOSFET. The relation of the pMOSFET hot carrier degradation to stress time (t), channel width (W ), channel length (L), and stress voltage (Vd ) is then discussed. Based on the relation, a lifetime prediction model is proposed, which can predict the lifetime of the ultra-deep sub-micron pMOSFET accurately and reflect the influence of the factors on hot carrier degradation directly. 相似文献
4.
Actions of negative bias temperature instability (NBTI) and hot carriers in ultra-deep submicron p-channel metal——oxide——semiconductor field-effect transistors (PMOSFETs) 下载免费PDF全文
Hot carrier injection (HCI) at high temperatures and different
values of gate bias Vg has been performed in order to study
the actions of negative bias temperature instability (NBTI) and hot
carriers. Hot-carrier-stress-induced damage at Vg=Vd, where Vd is the voltage of the transistor drain,
increases as temperature rises, contrary to conventional hot carrier
behaviour, which is identified as being related to the NBTI. A
comparison between the actions of NBTI and hot carriers at low and
high gate voltages shows that the damage behaviours are quite
different: the low gate voltage stress results in an increase in
transconductance, while the NBTI-dominated high gate voltage and
high temperature stress causes a decrease in transconductance. It is
concluded that this can be a major source of hot carrier damage at
elevated temperatures and high gate voltage stressing of p-channel
metal--oxide--semiconductor field-effect transistors (PMOSFETs). We
demonstrate a novel mode of NBTI-enhanced hot carrier degradation in
PMOSFETs. A novel method to decouple the actions of NBTI from that
of hot carriers is also presented. 相似文献