首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
A supersonic turbulent boundary layer over a compression ramp is numerically investigated using the constrained large-eddy simulation (CLES) method. The compression corner is characterised by a deflection angle of 24°. The free-stream Mach number is Ma = 2.9, and the Reynolds number based on the momentum thickness of inlet boundary layer is Reθ = 2300. The mean and statistical quantities, such as mean velocity, wall pressure and Reynolds stresses, are thoroughly analysed and compared with those from traditional large-eddy simulation (LES), experimental measurement and direct numerical simulation (DNS). It turns out that CLES can predict the friction coefficient, wall-pressure distribution, size of separation bubble, Reynolds stresses, etc. more accurately than traditional LES, and the results are in reasonable agreement with the experimental and/or DNS data. Also discussed are the effects of specific parameterisations of the Reynolds constraint and interfacial positions separating the constrained and unconstrained regions on the performance of the CLES method.  相似文献   

2.
超声速层流/湍流压缩拐角流动结构的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
武宇  易仕和  陈植  张庆虎  冈敦殿 《物理学报》2013,62(18):184702-184702
Ma=3.0的超声速风洞中, 分别对上游边界层为超声速层流和湍流, 压缩角度为25°和28°的压缩拐角流动进行了实验研究. 采用纳米粒子示踪平面激光散射(NPLS)技术获得了流场整体和局部区域的精细结构, 边界层、剪切层、分离激波、回流区和再附激波等典型结构清晰可见, 测量了超声速层流压缩拐角壁面的压力系数. 从时间平均的流场结构中测量出分离激波、再附激波的角度和再附后重新发展的边界层的增长情况, 通过分析时间相关的流场NPLS图像, 可以发现流场结构随时间的演化特性. 实验结果表明: 在25°的压缩角度下, 超声速层流压缩拐角流动发生了典型的分离, 边界层迅速增长失稳转捩, 并引起一道诱导激波, 流场中出现了K-H涡、剪切层和微弱压缩波结构, 而超声速湍流压缩拐角流动没有出现分离, 湍流边界层始终表现为附着状态; 在28° 的压缩角度下, 超声速层流压缩拐角流动进一步分离, 回流区范围明显扩大, 诱导激波、分离激波向上游移动, 再附激波向下游移动, 分离区流动结构复杂, 相比之下, 超声速湍流压缩拐角流动的回流区范围明显较小, 边界层增长缓慢, 流场中没有出现诱导激波、K-H涡和压缩波, 流动分离区域的结构也相对简单, 但分离激波的强度则明显更强. 关键词: 压缩拐角 层流 湍流 流动结构  相似文献   

3.
An analysis is presented to study the dual nature of solutions for the forced convective boundary layer flow and heat transfer in a cross flow with viscous dissipation terms in the energy equation. The governing equations are transformed into a set of three self-similar ordinary differential equations by similarity transformations. These equations are solved numerically using the very efficient shooting method. This study reveals that the dual solutions of the transformed similarity equations for velocity and temperature distributions exist for certain values of the moving parameter, Prandtl number, and Eckert numbers. The reverse heat flux is observed for larger Eckert numbers; that is, heat absorption at the wall occurs.  相似文献   

4.
丁浩林  易仕和  朱杨柱  赵鑫海  何霖 《物理学报》2017,66(24):244201-244201
利用基于纳米粒子的平面激光散射技术获取超声速(Ma=3.0)湍流边界层的密度分布,采用光线追迹方法计算其对应的光程差分布,并结合边界层气动光学相似律验证实验结果的可靠性.着重研究了光线入射角度对超声速湍流边界层气动光学效应的影响,并对其内在机理进行了分析.研究表明,气动光学效应对光线入射角度的依赖性源于光线在流场中的传输路径,传输路径的不同导致了光线在流场中的传输距离以及对应密度脉动互相关结果的差异.光线倾斜入射导致其在流场中传输距离增长,进而气动光学效应出现恶化.光线入射方向与壁面垂直方向之间的夹角越大,气动光学效应越显著,而且不同时刻的差异性增加,气动光学效应校正的难度增加.超声速湍流边界层中大量具有特定方向的涡结构导致了湍流边界层气动光学效应的各向异性.当光线倾斜向下游入射时,光线传播方向与流场中的涡结构具有较好的一致性,体现为此方向上密度脉动互相关系数较大,故气动光学效应比较严重.而当光线倾斜向上游入射时,相关系数较小,故气动光学效应较弱.  相似文献   

5.
湍流边界层中下扫流与“反发卡涡”   总被引:4,自引:0,他引:4       下载免费PDF全文
连祺祥  郭辉 《物理学报》2004,53(7):2226-2232
用氢气泡法观测湍流边界层的下扫流和有关的流动结构.实验中发现一种新型涡结构,它的特征与典型的发卡涡正好相反.发卡涡的头部指向下游,而它的头部指向上游; 发卡涡的两腿之间,由于涡的诱导产生上升流,而它则在其两腿之间,由于涡的诱导产生下扫流. 关键词: 湍流边界层 流动显示 流动结构 发卡涡  相似文献   

6.
付佳  易仕和  王小虎  张庆虎  何霖 《物理学报》2015,64(1):14704-014704
本文在高超声速脉冲式风洞内对基于纳米示踪的平面激光散射技术(nano-based planar laser scattering, NPLS)的应用进行了探索, 并在此基础上对平板边界层流动结构的精细测量进行了研究. 试验来流Ma=7.3, 总压4.8 MPa, 总温680 K. 通过时序的分析和调试, 对各分系统实现了高精度的同步控制; 定量的粒子注入及混合, 实现了粒子的均匀撒播, 对主流获得了均匀的显示效果; 对于边界层流动, 获得了精细的瞬态流动结构图像, 显示了层流到湍流的转捩过程, 并分析了其时空演化特性.  相似文献   

7.
We conduct a series of large eddy simulations (LES) of turbulent boundary layers over arrays of cuboidal roughness elements at arbitrary orientation angles (non-frontal orientations with the incident flow). Flow response to changing roughness orientation is systematically studied at two ground coverage densities, λp = 0.06 and 0.11. As expected, the effective roughness heights zo measured from LES are higher for λp = 0.11 than for λp = 0.06, although appreciable changes both in zo and wall shear stress (friction velocity) are observed at both ground coverage densities as the roughness orientation angle changes. This suggests the necessity of accounting for detailed rough wall topology (including more information than just λp, λf) when relating rough wall morphology to its aerodynamic properties. To this end, a recently developed analytical rough wall parameterisation is used to predict the aerodynamic properties of the simulated rough surfaces. In this rough wall model, wake interactions among roughness elements are explicitly modelled using the concept of sheltering height and exponential attenuation coefficient. As a result, the parameterisation is responsive to detailed ground roughness arrangements and flow conditions, including roughness height variations, element orientation, incident flow direction, transverse displacements, etc. Model-predicted effective roughness heights, wall stress, mean velocity at the height of the roughness, and in some cases displacement height, are compared against the LES measurements from this study as well as numerical/experiment measurements from other authors. The predictions from the model are found to agree well with the measurements both in trends and in absolute values, thus extending the applicability of the analytical rough wall model to more general surfaces than those previously tested.  相似文献   

8.
At the late stage of transitional boundary layers, the nonlinear evolution of the ring-like vortices and spike structures and their effects on the surrounding flow were studied by means of direct numerical simulation with high order accuracy. A spatial transition of the flat-plate boundary layers in the compressible flow was conducted. Detailed numerical results with high resolution clearly represented the typical vortex structures, such as ring-like vortices and so on, and induced ejection and sweep events...  相似文献   

9.
考虑车辆相对运动速度的交通流演化过程的数值模拟   总被引:11,自引:0,他引:11       下载免费PDF全文
提出考虑了车辆相对运动速度的最佳速度跟车模型,对该模型稳定性进行了分析.对其所描述的交通流的演化过程进行了数值模拟,并与未考虑相对运动速度的最佳速度跟车模型作了比较. 关键词: 交通流 最佳速度 跟车模型 相对运动速度  相似文献   

10.
Analytical solutions of the Schrödinger equation for the one‐dimensional quantum well with all possible permutations of the Dirichlet and Neumann boundary conditions (BCs) in perpendicular to the interfaces uniform electric field are used for the comparative investigation of their interaction and its influence on the properties of the system. Limiting cases of the weak and strong voltages allow an easy mathematical treatment and its clear physical explanation; in particular, for the small , the perturbation theory derives for all geometries a linear dependence of the polarization on the field with the BC‐dependent proportionality coefficient being positive (negative) for the ground (excited) states. Simple two‐level approximation elementary explains the negative polarizations as a result of the field‐induced destructive interference of the unperturbed modes and shows that in this case the admixture of only the neighboring states plays a dominant role. Different magnitudes of the polarization for different BCs in this regime are explained physically and confirmed numerically. Hellmann‐Feynman theorem reveals a fundamental relation between the polarization and the speed of the energy change with the field. It is proved that zero‐voltage position entropies are BC independent and for all states but the ground Neumann level (which has ) are equal to while the momentum entropies depend on the edge requirements and the level. Varying electric field changes position and momentum entropies in the opposite directions such that the entropic uncertainty relation is satisfied. Other physical quantities such as the BC‐dependent zero‐energy and zero‐polarization fields are also studied both numerically and analytically. Applications to different branches of physics, such as ocean fluid dynamics and atmospheric and metallic waveguide electrodynamics, are discussed.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号