首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lignocellulosic wastes such as neem hull, wheat bran, and sugarcane bagasse, available in abundance, are excellent substrates for the production of ligninolytic enzymes under solid-state fermentation by white-rot fungi. A ligninolytic enzyme system with high activity showing enhanced decomposition was obtained by cocultivation of Pleurotus ostreatus and Phanerochaete chrysosporium on combinations of lignocellulosic waste. Among the various substrate combinations examined, neem hull and wheat bran wastes gave the highest ligninolytic activity. A maximum production of laccase of 772 U/g and manganese peroxidase of 982 U/g was obtained on d 20 and lignin peroxidase of 656 U/g on d 25 at 28±1 °C under solid-state fermentation. All three enzymes thus obtained were partially purified by acetone fractionation and were exploited for decolorizing different types of acid and reactive dyes.  相似文献   

2.
Species of the genus Pleurotus are among the most efficient natural species in lignin degradation belonging to the subclass of ligninolytic organisms that produce laccase (Lac), Mn-dependent peroxidase (MnP), versatile peroxidase (VP), and the H2O2-generating enzyme aryl-alcohol oxidase, but not lignin peroxidases. Production of Lac and oxidation of 2,6-dimethoxyphenol (DMP) in the presence and absence of Mn2+ were detected both in submerged fermentation (SF) of dry ground mandarine peels and in solid-state fermentation (SSF) of grapevine sawdust in all investigated Pleurotus species and strains. Evidence of cultivation methods having a distinct influence on the level of enzyme activities has been demonstrated. Most of the species and strains had higher Lac activity under SSF conditions than under SF conditions. DMP oxidation in the presence and absence of Mn2+ was detected in all investigated species and strains, but was lower under SF conditions than under SSF conditions for most of them. However, relative activities of DMP oxidation in the absence of Mn2+, as percentages of activity agasint DMP in the presence of Mn2+, were higher under conditions of SF than in SSF cultures in most of the investigated species and strains. The obtained results showed that strains of different origins have different efficiently ligninolytic systems and that conditions of SSF are more favorable for ligninolytic activity than those in SF owing to their similarity to natural conditions on wood substrates.  相似文献   

3.
Although a number of filamentous fungi, such as Trichoderma and Aspergillus, are well known as producers of cellulases, xylanases, and accessory cellulolytic enzymes, the search for new strains and new enzymes has become a priority with the increase in diversity of biomass sources. Moreover, according to the type of pretreatment applied, biomass of the same type may require different enzyme blends to be efficiently hydrolyzed. This study evaluated cellulases, xylanases, and β-glucosidases produced by two fungi, the thermotolerant Acrophialophora nainiana and Ceratocystis paradoxa. Cells were grown in submerged culture on three carbon sources: lactose, wheat bran, or steam-pretreated sugarcane bagasse, a commonly used cattle feed in Brazil. Xylanase and endo-1-4-β-glucanase (CMCase) highest production were found in A. nainiana growing on lactose and reached levels of 2,200 and 2,016 IU/L, respectively. C. paradoxa showed highest activity for xylanase when grown on wheat bran and for β-glucosidase when grown on steam-treated bagasse, at levels of 12,728 and 1,068 IU/mL, respectively.  相似文献   

4.
Sugarcane bagasse was subjected to lime (calcium hydroxide) pretreatment and enzymatic hydrolysis for second-generation ethanol production. A central composite factorial design was performed to determine the best combination of pretreatment time, temperature, and lime loading, as well as to evaluate the influence of enzymatic loadings on hydrolysis conversion. The influence of increasing solids loading in the pretreatment and enzymatic hydrolysis stages was also determined. The hydrolysate was fermented using Saccharomyces cerevisiae in batch and continuous mode. In the continuous fermentation, the hydrolysates were concentrated with molasses. Lime pretreatment significantly increased the enzymatic digestibility of sugarcane bagasse without the need for prior particle size reduction. In the optimal pretreatment conditions (90 h, 90 °C, 0.47 g?lime/g bagasse) and industrially realistic conditions of hydrolysis (12.7 FPU/g of cellulase and 7.3 CBU/g of β-glucosidase), 139.6 kg?lignin/ton raw bagasse and 126.0 kg hemicellulose in the pretreatment liquor per ton raw bagasse were obtained. The hydrolysate from lime pretreated sugarcane bagasse presented low amounts of inhibitors, leading to ethanol yield of 164.1 kg?ethanol/ton raw bagasse.  相似文献   

5.
This study evaluated the production of cellulolytic enzymes by an Aspergillus fumigatus strain, isolated from sugar cane bagasse, according to its ability to grow on microcrystalline cellulose as the sole carbon source. The effect of the carbon source (brewer’s spent grain, sugarcane bagasse, and wheat bran) and of the nitrogen source (corn steep liquor and sodium nitrate) on cellulase production was studied using submerged and solid state cultivations at 30 °C. The highest levels of endoglucanase (CMCase) corresponded to 365 U L-1 and was obtained using sugarcane bagasse (1%) and corn steep liquor (1.2%) in submerged fermentation within 6 days of cultivation. This supernatant was used to run a sodium dodecyl sulfate polyacrylamide gel electrophoresis that showed six bands with endoglucanase activity. CMCase activity was higher at 65 °C and pH 2.0, indicating that this microorganism produces a thermophilic and acid endoglucanase. Solid state cultivation favored FPase production, that reached 47 U g-1 of dry substrate (wheat bran and sugarcane bagasse) within 3 days.  相似文献   

6.
Root-knot disease caused by Meloidogyne incognita is a matter of grave concern because it affects several economically important crop plants. The use of solid-state fermentation (SSF) may help to elaborate efficient formulations with fungi to be employed in the biologic control of nematodes. Attempts were made to select low-cost substrates for spore production of a strain of Paecilomyces lilacinus with known nematicide capacity. Coffee husks, cassava bagasse, and defatted soybean cake were utilized as substrates, and sugarcane bagasse was used as support. Fermentations were carried out in flasks covered with filter paper at 28°C for 10 d. The products obtained by SSF were evaluated for their nematicide activity in pot experiments containing one seedling of the plant Coleus inoculated with the nematode M. incognita. The plants were evaluated 2 mo after inoculation. Fermented products showed a reduction in the number of nematodes. The best results were obtained with defatted soybean cake, which showed almost 100% reduction in the number of nematodes; the reduction with coffee husk was 80% and with cassava bagasse was about 60%.  相似文献   

7.
The use of purified xylan as a substrate for bioconversion into xylanases increases the cost of enzyme production. Consequently, there have been attempts to develop a bioprocess to produce such enzymes using different lignocellulosic residues. Filamentous fungi have been widely used to produce hydrolytic enzymes for industrial applications, including xylanases, whose levels in fungi are generally much higher than those in yeast and bacteria. Considering the industrial importance of xylanases, the present study evaluated the use of milled sugarcane bagasse, without any pretreatment, as a carbon source. Also, the effect of different nitrogen sources and the C∶N ratio on xylanase production by Aspergillus awamori were investigated, in experiments carried out in solid-state fermentation. High extracellular xylanolytic activity was observed on cultivation of A. awamori on milled sugarcane bagasse and organic nitrogen sources (45 IU/mL for endoxylanase and 3.5 IU/mL for β-xylosidase). Endoxylanase and β-xylosidase activities were higher when sodium nitrate was used as the nitrogen source, when compared with peptone, urea, and ammonium sulfate at the optimized C∶N ratio of 10∶1. The use of yeast extract as a supplement to the these nitrogen sources resulted in considerable improvementin the production of xylanases, showing the importance of this organic nitrogen source on A. awamori metabolism.  相似文献   

8.
Sugarcane bagasse was pretreated with the white-rot fungus Ceriporiopsis subvermispora for 30 d of incubation. The solid-state fermentation of 800 g of bagasse was carried out in 20-L bioreactors with an inoculum charge of 250 mg of fungal mycelium/kg of bagasse. The oxidative enzymes manganese peroxidase (MnP), lignin peroxidase (LiP), and lac-case (Lac) and the hydrolytic enzyme xylanase (Xyl) were measured by standard methods and related to the fungus’s potential for delignification. Among the lignocellulolytic assayed enzymes, Xyl was detected in larger quantity (4478 IU/kg), followed by MnP (236 IU/kg). LiP and Lac were not detected. The results of chemical analysis and mass component loss showed that C. subvermispora was selective to lignin degradation. Pretreated sugarcane bagasse and control pulps were obtained by soda/anthraquinone (AQ) pulping. Pulp yields, kappa number, and viscosity of all pulps were determined by chemical analysis of the samples. Yields of soda/AQ ranged from 46 to 54%, kappa numbers were 15–25, and the viscosity ranged from 3.6 to 7 cP for pulps obtained from pretreated sugarcane bagasse.  相似文献   

9.
To increase the value of coproducts from corn ethanol fermentation and soybean aqueous processing, distiller??s dried grains with solubles (DDGS) and soybean cotyledon fiber were used as the substrates for solid state fermentation (SSF) to improve feed digestibility. Aspergillus oryzae, Trichoderma reesei, and Phanerochaete chrysosporium were chosen as they produce desirable enzymes and are widely used in SSF for feed. The results showed that the cellulase and xylanase activities were significantly increased after 7?days of fermentation, and cellulose and hemicellulose degradation was also greatly increased. When soybean fiber was used as SSF substrate, the maximum activities of the cellulase and xylanase were 10.3 and 84.2?IU/g substrate (dry weight basis) after SSF treatment, respectively. However, the enzyme activities were relatively low in DDGS, and the growth of the three fungi was poor. The fungi grew better when soybean cotyledon fiber was added to DDGS, and cellulase and xylanase activity increased with the increase of soybean fiber content. Porosity was identified as an important factor for SSF because the addition of inert soybean hull alone improved the fungi growth significantly. These data suggest that the nutritional value of DDGS and soybean cotyledon fiber as monogastric animal feed could be greatly enhanced by SSF treatment.  相似文献   

10.
Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.  相似文献   

11.
Aspergillus niger CTBU isolated from local decayed bamboo shoot residue was employed to solid-state fermentation (SSF) of bamboo shoot residue to elevate the content of phytosterols. Strain acclimatization was carried out under the fermentation condition using bamboo shoot as substrate for fermentation performance improvement. The optimal fermentation temperature and nitrogen level were investigated using acclimatized strain, and SSF was carried out in a 500-ml Erlenmeyer flask feeding 300-mg bamboo shoot residue chips under the optimal condition (33 °C and feeding 4 % urea), and 1,186 mg (100 g)?1 of total phytosterol was attained after 5-day fermentation, in comparison, only 523 mg (100 g)?1 of phytosterol was assayed in fresh shoots residue. HPLC analysis of the main composition of total phytosterols displays that the types of phytosterols and composition ratio of main sterols keep steady. This laboratorial scale SSF unit could be scaled up for raw phytosterols production from discarded bamboo shoot residue and could reduce its cost.  相似文献   

12.
Sugarcane bagasse is the major by-product of the sugar industry. It has a great potential for the production of biofuels and chemicals due to its considerable amount of cellulose and hemicellulose. In this study, we investigated a simple and economic pretreatment process using dilute ammonia for the storage of sugarcane bagasse. Sugarcane bagasse was stored in 0, 0.03, and 0.3% (w/w) ammonium hydroxide in a closed bottle for 40 days at 30 °C under atmospheric pressure without any agitation or circulation. Samples were taken every 10 days and analyzed for changes on lignin, cellulose, hemicellulose composition, ammonia concentration, and microbial counts. Biomass storage for 40 days at 0.3% ammonium hydroxide removed 46% of lignin and retained 100% cellulose and 73% hemicellulose.  相似文献   

13.
14.
The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production.  相似文献   

15.
The present paper studies the biotechnological production of xylitol using sugarcane bagasse hydrolysate in a repeated batch fermentation system with immobilized cells of Candida guilliermondii FTI20037. Immobilized cell system is considered as an attractive alternative to reuse the well-grown and adapted yeast cells in a new fresh fermentation media, without the need of the inoculum stage. In this work, seven repeated batches were performed in a fluidized bed bioreactor using immobilized cells in calcium alginate beads. According to the obtained results it was observed that the immobilized cells of C. guilliermondii can be reused for six successive batches maintaining an average xylitol yield (Y p/s) of 0.7 g/L and a volumetric productivity (Q p) of 0.42 g/L?h at the end of 432 h of fermentation. On the other hand, in the seventh batch (504 h), a decrease of 44 % in the final concentration of xylitol was observed. This reduction can be explained by the possible diffusion and accumulation of insoluble substances, found in the hemicellulosic hydrolysate, in the interior of the immobilization support resulting in substrate mass transfer limitations.  相似文献   

16.
The production of 6-pentyl-α-pyrone (6-PP), an unsaturated d-lactone with a strong coconut-like aroma was studied and compared with liquid and solid substrates. A fungi strain that produces coconut aroma compound was selected. The liquid medium of the submerged culture was used to impregnate a solid support of sugarcane bagasse in SSF (Solid State Fermentation). This substrate was adequate for growth and aroma production; the concentration obtained using SSF was higher than using liquid fermentation process. In the present work, it is demonstrated that, by solid-state-fermentation process, it is possible to produce 6-PP. The amount of 6-PP produced using a solid state substrate, following a 5 d culture, was 3 mg/g dry matter. Therefore, the amount of 6-PP produced during solid-state-fermentation process is higher than that reported in literature for submerged process.  相似文献   

17.
Enzymatic hydrolysis is an important but expensive step in the production of ethanol from biomass. Thus, the production of efficient enzymatic cocktails is of great interest for this biotechnological application. The production of endoglucanase and xylanase activites from F. verticillioides were optimized in a factorial design (25) followed by a CCDR design. Endoglucanase and xylanase activities increased from 2.8 to 8.0 U/mL and from 13.4 to 114 U/mL, respectively. The optimal pH and temperature were determined for endoglucanase (5.6, 80 °C), cellobiase (5.6, 60 °C), FPase (6.0, 55 °C) and xylanase (7.0, 50 °C). The optimized crude extract was applied in saccharification and fermentation of sugarcane bagasse from which 9.7 g/L of ethanol was produced at an ethanol/biomass yield of 0.19.  相似文献   

18.
The energy from sugarcane is one of the most important in Brazil’s energy matrix and the efficiency of extraction and processing is fully dependent on the quality of the raw material. The soil present in sugarcane was investigate here as a factor that can affect the production of energy. Chemical elements (Fe, Hf, Sc and Th) determined by instrumental neutron activation analysis were used for tracing soil in sugarcane and its derived bagasse. The lower calorific value (LCV) of bagasse demonstrated a good negative correlation (r = ?0.9727) with the ash content of the bagasse, which in turn was positively correlated to the amount of soil in the sugarcane. Therefore, the presence of soil reduces the production of energy from burning bagasse. The proportion of loss in the LCV was just slightly higher than the soil content, i.e. for an soil content of 10 % a reduction of 12.7 % was observed in the LCV.  相似文献   

19.
Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g?1 cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g?1 cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.  相似文献   

20.
Rapeseed meal is valuable high-protein forage, but its nutritional value is significantly reduced by the presence of a number of antinutrients, including phenolic compounds. Solid-state fermentation with white-rot fungi was used to decrease the sinapic acid concentration of rapeseed meal. After 7 days of growth of Trametes versicolor and Pleurotus ostreatus, the sinapic acid content of rapeseed meal was reduced by 59.9 and 74.5 %, respectively. At the end of the experiment, sinapic acid concentration of T. versicolor cultures decreased by 93 % of the initial value; in the case of cultures of P. ostreatus, 93.2 % reduction was observed. Moreover, cultivation of white-rot fungi on rapeseed meal resulted in the intensive production of extracellular laccase, particularly strong during the late phases of growth of T. versicolor. The obtained results confirm that both fungal species may effectively be used to decompose antinutritional phenolics of rapeseed meal. Rapeseed meal may also find use as an inexpensive and efficient substrate for a biotechnological production of laccase by white-rot fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号