首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Excitation and pressure dependence of fluorescence and phosphorescence quantum yields has been reinvestigated in detail for quinoxaline in the static vapor phase at pressure range from 10(-3) to 10(-1) Torr. It is shown that the ratio of the nonradiative rate from T(1)(pi, pi*) to the rate of the S(1)(n, pi*) approximately -->T(1)(pi, pi*) intersystem crossing decreases with increasing the excitation energy in the S(0)-->S(1) excitation region. The phosphorescence quantum yield measured as a function of the excitation energy at low pressure shows an abrupt decrease on going the excitation from S(0)-->S(1) to S(0)-->S(2), indicating the slow vibrational energy redistribution between the S(1) levels optically populated and those populated through the internal conversion from S(2) to S(1).  相似文献   

2.
Time-resolved fluorescence spectra of naphthalene in the S(1) state have been measured in various gases below 10(2) kPa. The band shape of the fluorescence changed in an earlier time region after the photoexcitation when an excess energy (3300 cm(-1)) above the 0-0 transition energy was given. The excitation energy dependence of the fluorescence band shape of an isolated naphthalene molecule was measured separately, and the time dependence of the fluorescence band shape in gases was found to be due to the vibrational energy relaxation in the S(1) state. We have succeeded in determining the transient excess vibrational energy by comparing the time-resolved fluorescence band shape with the excitation energy dependence of the fluorescence band shape. The excess vibrational energy decayed almost exponentially. From the slope of the decay rate against the buffer gas pressure, we have determined the collisional decay rate of the excess vibrational energy in various gases. The dependence of the vibrational energy relaxation rate on the buffer gas species was similar to the case of azulene. The comparisons with the results in the low temperature argon and the energy relaxation rate in the S(0) state in nitrogen were also discussed.  相似文献   

3.
Emission and excitation spectra of 3- and 4-pyridinecarboxaldehyde vapors have been measured at different pressures down to 10(-2)Torr. The phosphorescence quantum yield measured at low pressure as a function of excitation energy is nearly constant in the range of excitation energy corresponding to the S1(n, pi*) state, but it decreases abruptly at the S2(pi, pi*) threshold. The onset of the abrupt decrease of the yield corresponds to the location of the S2 absorption origin of each molecule, indicating that the nonradiative pathway depends on the type of the excited singlet state to which the molecule is initially excited. The relaxation processes are discussed based on the pressure and excitation-energy dependence of the phosphorescence quantum yield.  相似文献   

4.
Emission and excitation spectra of 2-, 3- and 4-pyridinecarboxaldehyde (2-, 3- and 4-PCA, respectively) vapors have been measured at different temperatures and compared to one another. The emission spectra of these vapors are shown to consist of the T(1)(n, pi) --> S(0) phosphorescence accompanied by the weak thermally activated S(1)(n, pi) --> S(0) delayed fluorescence. Two peaks originating from the two rotamers (syn and anti) have been identified in the fluorescence, phosphorescence and excitation spectra of 3-PCA vapor. Analyses of the temperature dependence and vibrational structure of the spectra of 3-PCA vapor provide the syn-anti energy difference of 190 +/- 30 cm(-1) in the T(1) (n, pi) state, 200 +/- 30 cm(-1) in the S(1)(n, pi) state, and 290 +/- 35 cm(-1) in the ground state. The ground-state energy difference is in agreement with the result of density functional theory (DFT) calculation for 3-PCA vapor. DFT calculation demonstrated also that the syn rotamer exists as a less stable isomer in the ground state for 2- and 3-PCA vapors.  相似文献   

5.
Abstract— Fluorescence excitation spectra of all-trans retinal and the related polyene hydrocarbons anhydrovitamin A and diphenyloctatetraene show that only retinal has a wavelength-dependent fluorescence quantum yield. Three possibilities for the unusual quantum yield behavior of retinal are considered. We conclude that competition between a fast radiationless process (perhaps of photochemical origin) and internal conversion between 1ππ* states and a low-lying 1nπ* state provides the best rationalization for the data now in hand.  相似文献   

6.
The pressure and excitation-energy dependence of the fluorescence quantum yield and lifetime of pyrimidine vapor has been investigated in the pressure range 10?3-10 torr. The results indicate that in conformity to the intermediate case the fluorescence of the isolated pyrimidine molecule consists of fast and slow components with lifetimes of the order of 1 ns and 10 μs, respectively. The total fluorescence quantum yield amounts to as high as 0.045. The yield of the slow fluorescence component decreases significantly with increasing excitation energy; this observation is interpreted as being due mainly to the lengthening of the radiative lifetime of that component.  相似文献   

7.
《Chemical physics letters》1987,133(3):254-258
The phosphorescence quantum yield of benzaldehyde vapour has been measured as a function of excitation energy and pressure (1–300 Torr) of nitrogen as a foreign gas. It is shown that the yield varies greatly as the excitation energy is varied from S0→S2 to S0→S3, indicating that benzaldehyde excited into S3 decays by a non-radiative process which is different from that taken by the molecule excited into S2.  相似文献   

8.
Emission processes from lower excited states S1 (fluorescence) and T1 (phosphorescence) have been studied in the gas and liquid phases when biacetyl is excited into the second singlet state S2. (In agreement with Kasha's rule no fluorescence is observed from the S2 state.) In the liquid phase, when biacetyl is excited into the singlet states S1 and S2, no difference is observed between these emission processes. This phenomenon certainly results from an efficient nonradiative transition between the second excited singlet state S2 and the first excited state S1 with practically no excess vibrational energy. The quantum yield of this transition is almost unity and does not depend on the nature of the solvent. In the gas phase no emission processes are observed when biacetyl is excited into the S2 state at low pressure (less than 10 mm Hg). High pressure of inert gas is necessary in order to observe these processes. As for excitation into the S1 state with vibrational energy, loss of vibrational energy through collisions occurs from the S2 state. The quantum yield of the S2S1 transition by excitation at 290 nm is estimated around 0.5–0.6 at 6 atm of inert gas (ethane, ethylene, or carbon dioxide).  相似文献   

9.
Time-resolved infrared (TR-IR) absorption spectroscopy in both the femtosecond and nanosecond time domain has been applied to examine the photolysis of benzoic acid in acetonitrile solution following either 267 nm or 193 nm excitation. By combining the ultrafast and nanosecond TR-IR measurements, both the excited states and the photofragments have been detected and key mechanistic insights were obtained. We show that the solvent interaction modifies the excited state relaxation pathways and thus the population dynamics, leading to different photolysis behavior in solution from that observed in the gas phase. Vibrational energy transfer to solvents dissipates excitation energy efficiently, suppressing the photodissociation and depopulating the excited S(2) or S(3) state molecules to the lowest T(1) state with a rate of ~2.5 ps after a delayed onset of ~3.7 ps. Photolysis of benzoic acid using 267 nm excitation is dominated by the formation of the T(1) excited state and no photofragments could be detected. The results from TR-IR experiments using higher energy of 193 nm indicate that photodissociation proceeds more rapidly than the vibrational energy transfer to solvents and C-C bond fission becomes the dominant relaxation pathway in these experiments as featured by the prominent observation of the COOH photofragments and negligible yield of the T(1) excited state. The measured ultrafast formation of T(1) excited state supports the existence of the surface intersections of S(2)/S(1), S(2)/T(2), and S(1)/T(1)/T(2), and the large T(1) quantum yield of ~0.65 indicates the importance of the excited state depopulation to triplet manifold as the key factor affecting the photophysical and photochemical behavior of the monomeric benzoic acid.  相似文献   

10.
Electronic absorption, and excitation spectra of 1-methyl-4-[4-aminostyryl] pyridinum iodide (M-NH2) were measured in solvents of different polarity. The (M-NH2) dye exhibits negative solvatochromism, i.e. a hypsochromic band shift as the solvent polarity increases. The fluorescence quantum yield is also sensitive to the polarity and viscosity of the medium. The ground and excited state protonation constants were calculated and amount to 3.35 and 0.62, respectively. The effect of micellization on the emission spectrum of (M-NH2) are also studied in sodium dodecyl sulphate (SDS). The fluorescence intensity increases as the concentration of SDS increases with an abrupt change at cmc. The quantum yield of the cis trans photoisomerization is also determined in aqueous buffer solution of pH 1.1.  相似文献   

11.
Excitation-energy dependence of fluorescence intensity and fluorescence lifetime has been measured for 4-dimethylaminobenzonitrile (DMABN), 4-aminobenzonitrile (ABN), 4-diisopropylaminobenzonitrile (DIABN), and 1-naphthonitrile (NN) in a supersonic free jet. In all cases, the fluorescence yield decreases rather dramatically, whereas the fluorescence lifetime decreases only moderately for S1 (pi pi*, L(b)) excess vibrational energy exceeding about 1000 cm(-1). This is confirmed by comparison of the normalized fluorescence excitation spectrum with the absorption spectrum of the compound in the vapor phase. The result indicates that the strong decrease in the relative fluorescence yield at higher energies is due mostly to a decrease in the radiative decay rate of the emitting state. Comparison of the experimental results with the TDDFT potential energy curves for excited states strongly suggests that the decrease in the radiative decay rate of the aminobenzonitriles at higher energies is due to the crossing of the pi pi* singlet state by the lower-lying pi sigma*(C[triple bond]N) singlet state of very small radiative decay rate. The threshold energy for the fluorescence "break-off" is in good agreement with the computed energy barrier for the pi pi*/pi sigma* crossing. For NN, on the other hand, the observed decrease is in fluorescence yield at higher excitation energies can best be attributed to the crossing of the pi pi* singlet state by the pi sigma* triplet state.  相似文献   

12.
Abstract— The distribution of excitation energy between the two photosystems in the halophylic alga Dunaliella salina has been analyzed under ionic stress. In the transition from state 1 to state 2, it was found that a, the absorption cross-section of photosystem (PS) I increased from 42 to 49% until an equal distribution between PS I and PS II was obtained in state 2. Acclimation of the algae to different salt concentrations did not change the fractions of light absorbed in PS II and PS I, but slowed down the transition time from state 1 to state 2. A large increase in ΔpH induced fluorescence quenching was observed which was abolished by the uncoupler nigericin. Photoacoustic quantum yield spectra of energy storage indicated a larger energy storage at 700 nm induced upon stress. The additional ΔpH quenching of fluorescence and the additional quantum yield of energy storage at 700 nm, in the stressed algae, are consistent with the operation of a cyclic, energy-storing pathway in PS I which is uncoupler sensitive.  相似文献   

13.
The ultraviolet absorption spectra in the static vapor phase and the laser induced fluorescence spectra (both fluorescence excitation and single vibronic level fluorescence spectra) of jet-cooled 1,2,3,4-tetrahydronaphthalene have been used along with theoretical calculations to assign many of the vibronic levels in the S1(pi,pi*) state. These have been compared to the corresponding vibrational levels for the S0 ground state. Analysis of the upper states of the ring-twisting vibration nu(31) and three other low-frequency modes has allowed us to construct an energy map of the lowest vibrational quantum states for both S0 and S1. The molecule is highly twisted in both electronic states with high barriers to planarity, which are calculated to be 4811 cm(-1) for S0 and 5100 cm(-1) for S1. However, the experimental data show that the barrier should be lower in the S1 state.  相似文献   

14.
The dependence of CS2 predissociation upon rotational quantum number K at vibrational levels below the barrier to linearity of the 1B2(1Sigmau+) state has been investigated in detail with laser spectroscopy, by using a heated supersonic source to increase the intensities of hot band transitions. Predissociation lifetimes were determined from rotational contour simulations of 13 vibronic bands in the CS photofragment excitation (PHOFEX) spectrum, each terminating at the same upper vibrational level but via transitions with different K number (K = 0, 1, 2, respectively). The rovibrational populations of CS fragment at these excitation bands were derived from the laser-induced fluorescence (LIF) spectrum, and were used further to obtain the dissociation branching ratios S(1D)/S(3P) as well as the excess energy partitionings after dissociation. The lifetimes and the branching ratios were found to be sensitively dependent on quantum number K; the lifetime decreases with the increase of K, and the branching ratio increases with K. Analysis shows that quantum number K influences the S(1D) channel more effectively than the S(3P) channel. About 28 and 15% of the total available energy is taken up by the CS vibrational and rotational degrees of freedom, respectively. Systematic analysis indicates that the two electronic states interacting with 1B2(1Sigmau+) state should be bent, and the state correlating with S(1D) channel should be more bent.  相似文献   

15.
Experimental studies of the variation of the fluorescence yield and photochemical product yield are presented for dimethyl-s-tetrazine (DMT) at 0.6 Torr and 300 K. Results are also reported for the variation of these yields upon adding argon buffer gas. The fluorescence yield decreases with increasing excitation energy (0 to 4200 cm?1 vibrational energy excess in the first excited singlet state) but the decrease is insufficient to account for the corresponding increase in product yield. Added gas (600 Torr argon) quenches the photochemistry but not the fluorescence. The results imply that the photo-dissociation involves a bottleneck (B) in the non-radiative singlet decay. The molecules in B can be relaxed by collisions, relax to photostable DMT molecules without collisions, or undergo photodissociation.  相似文献   

16.
The photosensitive and thermally unstable molecule s-tetrazine decomposes to yield one nitrogen molecule and two HCN molecules. Following pulsed irradiation of tetrazine vapor at 492.3 nm, we have observed time resolved infrared fluorescence from HCN(001). In a similar experiment, small quantities of CO2 were added to the sample cell, and we observed infrared fluorescence from CO2 (001) populated by VV energy transfer. From fluorescence intensity measurements, we have been able to estimate the amount of excitation in certain product vibrations. We conclude that ≈ 1% of the HCN is produced in the (001) state, and the “equivalent” of ≈ 0.1 quantum of N2 vibrational excitation is excited. This latter figure may include some excitation of HCN (ν1), but the measured energy transfer rate coefficients are consistent with N2 excitation. The small amount of HCN(ν3) and N2 vibrational excitation is surprising, as the photodissociation is exothermic by more than 100kcal/mole.  相似文献   

17.
The phosphorescence quantum yield of benzaldehyde vapour was measured at low pressure (down to 2 mtorr) as a function of excitation wavelength. The quantum yield is essentially constant in the range of excitation energy corresponding to the S1(n,π*) state, but it decreases very rapidly as the excitation energy is raised to the value corresponding to S2(π,π*), indicating that the phosphorescence property of the benzaldehyde molecule varies, depending on the nature of the singlet state to which the molecule is initially excited.  相似文献   

18.
The relaxation dynamics of a zinc protoporphyrin (ZnPP) in THF, KPi buffer, and encapsulated within apomyoglobin (apoMb) was investigated in its excited state using femtosecond fluorescence up-conversion spectroscopy with S2 excitation (lambda(ex) = 430 nm). The S2 --> S1 internal conversion of ZnPP is ultrafast (tau < 100 fs), and the hot S1 ZnPP species are produced promptly after excitation. The relaxation dynamics of ZnPP in THF solution showed a dominant offset component (tau = 2.0 ns), but it disappeared completely when ZnPP formed aggregates in KPi buffer solution. When ZnPP was reconstituted into the heme pocket of apoMb to form a complex in KPi buffer solution, the fluorescence transients exhibited a biphasic decay feature with the signal approaching an asymptotic offset: at lambda(em) = 600 nm, the rapid component decayed in 710 fs and the slow one in 27 ps; at lambda(em) = 680 nm, the two time constants were 950 fs and 40 ps. We conclude that (1) the fast-decay component pertains to an efficient transfer of energy from the hot S1 ZnPP species to apoMb through a dative bond between zinc and proximal histidine of the protein; (2) the slow-decay component arises from the water-induced vibrational relaxation of the hot S1 ZnPP species; and (3) the offset component is due to S1 --> T1 intersystem crossing of the surviving cold S1 ZnPP species. The transfer of energy through bonds might lead the dative bond to break, which explains our observation of the degradation of ZnPP-Mb samples in UV-vis and CD spectra upon protracted excitation.  相似文献   

19.
Laser flash photolysis (LFP, 400 nm excitation) of the anti-cancer drug tirapazamine (TPZ) in acetonitrile produces the singlet excited-state S1 with lambda(max) = 544 nm. The lifetime of this state is 130 ps, in good agreement with the reported fluorescence lifetime. The excited state is reduced to the corresponding radical anion by KSCN or KI. The spectrum of the radical anion is in good agreement with previously reported pulse radiolysis studies and time-dependent density functional theory (TD-DFT) calculations. LFP of desoxytirapazamine (dTPZ) also produces the first excited singlet state, S1. The fluorescence quantum yield and lifetime (5.4 ns) of the dTPZ singlet excited state are both much greater than the corresponding values of TPZ. This is explained by DFT calculations that predict that cyclization of TPZ to form an oxaziridine is thermodynamically facile but that cyclization of dTPZ to form an oxadiaziridine is not. Thus, the S1 state of TPZ has a short lifetime and low fluorescence quantum yield due to ready cyclization whereas the cyclization of the S1 state of dTPZ is unimportant and does not limit either the fluorescence quantum yield or the fluorescence lifetime. This conclusion is confirmed by studies of dTPZ', an isomer of dTPZ containing the C=N-O moiety which has a low quantum yield and short fluorescence lifetime similar to that of TPZ.  相似文献   

20.
在水溶液中,由两条互补的单链DNA 构成的双螺旋沿着大沟有额外的氢键受体和给体,这些给体和受体暴露于周围环境,从而可以和专一性的结合分子(如蛋白)发生相互作用,形成特异性的复合物,也可以与另外的单链DNA 分子结合形成三链DNA.近年来,由于越来越多的证据表明:三链DNA 能在细胞体内形成,并具有多种生物学功能而引起了人们的广泛关注,成为生物化学、分子生物学和基因工程领域的一个前沿课题.通过三链DNA的形成,寡聚核酸可以参与基因转录过程,但是在生理条件下,三链DNA 的稳定性似乎是  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号