首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interpenetrating polymer networks (IPNs) of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) were prepared by simultaneous network formation. The PEO network was produced by acid-catlayzed self-condensation of α,ω-bis(triethoxysilane)-terminated PEO in the presence of small amounts of water. The PMMA network was formed by free radical polymerization of MAA in the presence of divinylbenzene as crosslinker. The reaction conditions were adjusted to obtain similar crosslinking kinetics for both reactions. An attempt was made to construct a phase diagram of the IPNs by measuring the composition of the IPNs at the moment of the appearance of the phase separation, as indicated by the onset of turbidity. This composition could be determined because the siloxane crosslinks of the PEO network could be hydrolyzed in aqueous NaOH with the formation of linear, soluble PEO chains. The phase diagram was compared with phase diagrams of blends of linear polymers and of semi-IPNs (crosslinked PMMA and linear PEO), obtained under similar conditions, i.e. polymerization of MMA in the presence of varying amounts of PEO. It was observed that the form of the phase diagrams of the linear polymers is similar to that of the IPNs, but is quite different from that of the semi-IPNs. Thus, homogeneous transparent materials containing up to 60% of PEO could be prepared in the blends and the IPNs, but in the semi-IPNs, phase separation occurred with PEO contents as low as 10%.  相似文献   

2.
The heterogeneous free-radical polymerization of methyl methylacrylate(MMA) and divinylbenzene (DVB) as cross-linker within supercritical carbon dioxide-swollen silicon rubber (SR) has been studied as an approach to preparing semi-interpenetrating polymer network (semi-IPN) of SR and poly(methyl methylacrylate)(PMMA). The SR/PMMA semi-IPNs were characterized by scanning electron microscopy(SEM) and dynamic mechanical analyzer (DMA).  相似文献   

3.
Simultaneous IPNs of poly(dimethyl siloxane-urethane) (PDMSU)/poly(methyl methacrylate) (PMMA) and related isomers have been prepared by using new oligomers of bis(β-hydroxyethoxymethyl)poly(dimethyl siloxane)s (PDMS diols) and new crosslinkers biuret triisocyanate (BTI) and tris(β-hydroxylethoxymethyl dimethylsiloxy) phenylsilane (Si-triol). Their phase morphology have been characterized by DSC and SEM. The SEM phase domain size is decreased by increasing crosslink density of the PDMSU network. A single phase IPN of PDMSU/PMMA can be made at an Mc = 1000 and 80 wt % of PDMSU. All of the pseudo- or semi-IPNs and blends of PDMSU and PMMA were phase separated with phase domain sizes ranging from 0.2 to several micrometers. The full IPNs of PDMSU/PMMA have better thermal resistance compared to the blends of linear PDMSU and linear PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Abstract

The effect of poly(methyl methacrylate) [PMMA], with different molecular weights on the mechanical properties of a polymerized BisGMA/TEGDMA base monomer resin was investigated. With the aid of acetone solvent, PMMA could be readily dissolved in BisGMA/TEGDMA mixtures. The addition of PMMA can significantly improve the compressive strengths and decrease the Knoop hardness values of the BisGMA/TEGDMA/PMMA semi-IPNs. The thermal expansion coefficients rapidly increased before Tg, and decreased after T g. The observed properties could be attributed to the effect of the molecular weight of the PMMA on the phase structures of the semi-IPNs.  相似文献   

5.
Simultaneous interpenetrating polymer networks (IPNs) based on polyether polyurethane (PUR) and poly(methyl methacrylate‐co‐trimethylol‐propane trimethacrylate) (PMMA) were prepared in bulk at 60°C, using tin(II) octoate and azobisisobutyronitrile (AIBN) as pur polymerization catalyst and free‐radical initiator, respectively. The kinetics of the PUR network formation, PMMA network formation as well as PUR/PMMA IPN formation were studied independently by Fourier transform infra‐red spectroscopy. The simultaneous formation of the two networks interfered with each other, although they follow different polymerization mechanisms. Mainly two effects concerning the free‐radical polymerization have been seen: a decrease of the initiation period and an earlier appearance of the Trommsdorff effect when increasing the concentration of the catalyst. On the other hand, the presence of AIBN in the reaction medium drastically reduced the catalytic efficiency of the organotin compound. An explanation of these results for this particular activating system could be the formation of a cyclic equimolar complex by coordination of the nitrile groups of AIBN with the Sn(II) atom. Complexation both reduces the effective catalyst concentration and induces steric constraints in the azo bond of AIBN, rendering this linkage weaker and more easily cleavable and allowing an early decomposition into radicals of the complexed AIBN. The maximum rate corresponds to a 1:1 complex. Further, decomposition into radicals leads to tin oxidation and formation of a new tetravalent organotin compound, the catalytic activity of which is lower than that of pure tin(II) octoate for the isocyanate‐alcohol reaction.  相似文献   

6.
Complexation of iron, copper, and chromium β-diketonates with poly(urethane) and poly(methyl methacrylate) in semi-interpenetrating polymer networks was studied by IR spectroscopy and ESR using various paramagnetic probes. It was shown that types of complexes arising in semi-interpenetrating polymer networks depend on the central metal ion in a chelate. In the networks containing iron and copper β-diketonates, formation of complexes between chelates of these metals and donor groups of PUR and PMMA promotes mutual penetration of poly(urethane) and poly(methyl methacrylate) phases. As a consequence, the degree of their separation decreases and the interphase region widens.  相似文献   

7.
We investigated the rapid and precise molecular release from hydrogels in response to dual stimuli. To achieve precise on/off drug release using thermoresponsive poly(N-isopropylacrylamide) hydrogels, we prepared nano-structured semi-IPNs, which consisted of thermosensitive PNIPAAm networks penetrated by pH-responsive poly(acrylic acid) (PAAc) linear chains and perforated to create nano-tracts as a molecular pathway. The present nano-tracted semi-IPNs show a rapid deswelling response to both temperature and pH. Model drug releases were investigated when simultaneous changes in temperature and pH were applied. We observed that the cationic drug was rapidly released and then abruptly discontinued from the nano-tracted semi-IPNs in response to the dual stimuli, and clear release and stopping cycles were repeatedly observed on successive steps. Moreover, the release rates and amount of drug released were controllable by the deswelling speed of the gels and the PAAc content inside the gels. This novel release system using the nano-tracted semi-IPNs may be useful for the high performance, pulsed release of molecules.  相似文献   

8.
用定量的甲苯溶胀聚醋酸乙烯酯/聚丙烯酸甲酯互穿网络聚合物(PVAc/PMA IPN),使体系处于分相的热力学条件;或醇解其中的PVAc 网络,即增加两组份的化学不相容性.动态力学谱和透射电镜等结果表明,IPN 和网络Ⅰ的交联密度较高的半 IPN 试样,没有发生进一步的相分离,证明网络互穿缠结是永久性的物理缠结,并且有强迫互容作用的存在.  相似文献   

9.
丝胶基半互穿温敏凝胶的合成及其溶胀行为的研究   总被引:2,自引:0,他引:2  
李学伟  张青松  陈莉 《化学学报》2010,68(18):1915-1920
采用半互穿网络技术, 将具有生物相容性的丝胶蛋白(silk sericin)作为第二网络进入聚(N-异丙基丙烯酰胺)(PNIPAM)水凝胶网络中, 在水溶液中制备得到具有半互穿网络结构的丝胶基温敏水凝胶(SS/PNIPAM semi-IPNs). 采用称重法研究了产物的(消)溶胀、温度敏感性、最大溶胀度及脉冲响应行为; 利用扫描电镜(SEM), 差示扫描量热仪(DSC)和动态热机械分析仪(DMA)分别考察了产物的内部形态、热相转变行为和其储能模量随温度的变化. 结果表明: 具有较高亲水性的丝胶蛋白的引入增大了semi-IPNs水凝胶的内部孔径, 导致SS/PNIPAM半互穿水凝胶的溶胀度增加, 并且其储能模量随温度变化更明显. 相比于纯PNIPAM水凝胶, 半互穿水凝胶的消溶胀速率和低临界溶解温度(LCST)变化不大.  相似文献   

10.
The morphology and miscibility of semi-interpenetrating polymer networks (semi-IPN) prepared with poly(styrene-co-methacrylic acid) [P(S-co-MAA)] of different carboxylic acid contents and poly(epsilon-caprolactone) (PCL) have been studied by ESR spin-label method. The ESR spectra of spin-labeled PCL showed one motional component at any specific temperature. It indicated that the spin-labeled molecules were located in one type of environment. The coexistence of two motional components in the ESR spectra of all semi-IPN samples was observed over a certain temperature range. This phenomenon suggested that the semi-IPNs were not compatible systems; they contained two microphases, a PCL-rich microdomain and a P(S-co-MAA)-rich microdomain. The miscibility could be improved by increasing the carboxylic acid content, which could enhance the hydrogen-bonding interactions between the ester groups of PCL and carboxylic acid groups in P(S-co-MAA). It was also found that the intracomponent cross-linking of the semi-IPNs was not in favor of the miscibility. The microphase separation occurred in all semi-IPNs, even in the samples having strong hydrogen-bonding interactions. With increasing cross-linking density, the microphase separation became more remarkable.  相似文献   

11.
Semi-IPNs were constructed by forming the crosslinking networks via the reaction between BPPO and diamine cross-linkers to overcome the dimensional swelling and methanol-permeation issues of SPEEK.  相似文献   

12.
Highly stable poly(methyl methacrylate) (PMMA) based microcapsule suspensions without excess dispersant are obtained via the solvent evaporation route using poly(methyl methacrylate)-block-poly(sodium methacrylate) or poly(methyl methacrylate)-block-poly(sodium acrylate) diblock copolymers as dispersant. The stable suspension is characterized by a high ζ-potential that does not change with time or after washing steps. It is indirectly proven on model PMMA surfaces using quartz crystal microbalance with dissipation monitoring that the PMMA block of the copolymer is embedded in the underlying PMMA microcapsule. Such anchoring of the dispersant is key for the good colloidal stability.  相似文献   

13.
Heteroarm H‐shaped terpolymers, (polystyrene)(poly(methyl methacrylate))‐ poly(tert‐butyl acrylate)‐(polystyrene)(poly(methyl methacrylate)), (PS)(PMMA)‐PtBA‐(PMMA)(PS), and, (PS)(PMMA)‐poly(ethylene glycol)(PEG)‐(PMMA)(PS), through click reaction strategy between PS‐PMMA copolymer (as side chains) with an alkyne functional group at the junction point and diazide end‐functionalized PtBA or PEG (as a main chain). PS‐PMMA with alkyne functional group was prepared by sequential living radical polymerizations such as the nitroxide mediated (NMP) and the metal mediated‐living radical polymerization (ATRP) routes. The obtained H‐shaped polymers were characterized by using 1H‐NMR, GPC, DSC, and AFM measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1055–1065, 2007  相似文献   

14.
Graft polymers from poly(vinyl chloride) (PVC) and chlorinated rubber (CIR) with side chains of poly(methyl methacrylate) (PMMA), poly(methyl acrylate) (PMA), or poly(ethyl methacrylate) (PEMA) were synthesized. For this purpose, a vinyl monomer was polymerized in the presence of small quantities of PVC or CIR with benzoyl peroxide as catalyst. The graft polymers were separated from both homopolymers by precipitation with methanol from methyl ethyl ketone solutions of the reaction products and the grafting efficiency was calculated. The graft polymers were characterized by infrared spectra, elemental analysis, NMR, and osmometric or light-scattering determinations. From the results it is concluded that the PVC or CIR molecules contain side chains of PMMA, PMA, or PEMA. The graft polymers showed higher molecular weights, and the values of second virial coefficient for these polymers were much different from those of the starting polymers.  相似文献   

15.
Simultaneous and sequential poly(N-isopropyl acrylamide) (PNIPAAm)/poly(dimethyl siloxane) (PDMS) semi-interpenetrating polymer networks (IPNs) with different linear PDMS contents were prepared by free radical polymerization method. Their phase morphologies have been characterized by FTIR, DSC and SEM. The simultaneous semi-IPNs exhibited phase transition temperatures (Tpt) shifted higher temperature from glass transition temperatures (Tg) of their respective homopolymers, suggesting a heterophase morphology and only physical entanglement between the PNIPAAm network and linear PDMS with high molecular weight (Mn≈9000 g/mol). For sequential semi-IPNs, the shift of Tpts towards lower temperature suggested that the chemical interaction between the constituents of the IPNs increased with increasing PDMS content in the network. In addition, these semi-IPNs were characterized for their thermo-sensitive behaviour by equilibrium swelling studies. The results showed that incorporation of hydrophobic PDMS polymer into the thermo- and pH-sensitive PNIPAAm and P(NIPAAm-co-IA) (itaconic acid) hydrogels by semi-IPN formation decreased swelling degrees of IPNs without affecting their LCSTs whereas addition of acrylated PDMS (Tegomer V-Si 2250) as crosslinker instead of N,N-methylenebisacrylamide (BIS) into the structures of these hydrogels changed their LCSTs along with their swelling degrees.  相似文献   

16.
Effects of adding a small amount of poly(methyl methacrylate)-block-poly(vinyl acetate) (PMMA-b-PVAc) to poly(methyl methacrylate)/poly(vinyl acetate) (PMMA/PVAc) blends with a lower critical solution temperature (LCST) phase diagram on the kinetics of late-stage spinodal decomposition (SD) were investigated by time-resolved light scattering at 160°C. It is found that the coarsening process of the structure was slowed down or accelerated upon addition of PMMA-b-PVAc depending on the composition of the block copolymer and the blend. The effect of the block copolymer on the domain size were interpreted as compatibilizing and incompatibilizing effects of the block copolymer on PMMA/PVAc blends based on the evaluation of changes in the stability limits of PMMA/PVAc with the addition of block copolymer using random phase approximation (RPA).  相似文献   

17.
A modified polystyrene, poly(styrene-co-p-(hexafluoro-2-hydroxy-2-propyl)styrene) (FPS), was blended with syndiotactic and/or isotactic poly(methyl methacrylate) (PMMA) in toluene. Blends were prepared under different conditions to control the self-aggregation of the PMMA segments. The formation of hydrogen bonding and the attendant changes in the aggregation or crystallization of PMMA segments were determined in the solid state by means of FTIR and DSC. The results indicate that for the binary blends, the aggregation of PMMA segments is diminished by hydrogen bonding interaction with either s-PMMA or i-PMMA, and that the interaction is stronger with the s-PMMA blends. For the ternary blends, FPS/s-PMMA/i-PMMA, the preference for stereocomplexation in the system with hydrogen bonding may be attributed to the “kink-nucleated” mechanism, which needs relatively short chain lengths of PMMA segments. Regardless of the order of addition of the components, the formation of crystalline stereocomplexes of s- and i-PMMA could be readily detected. Therefore, the miscibility of the polymer blends is dependent on the competition between the self-aggregation of the s- or i-PMMA segments, stereocomplexation and the hydrogen bonding interaction of PMMA segments with FPS.  相似文献   

18.
Poly(vinyl chloride) (PVC) is generally recognized as miscible with s.poly(methyl methacrylate) (s.PMMA), poly(?-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) copolymer (SAN) containing 27 wt % AN. Nonradiative energy transfer (NRET) is a very sensitive technique in the investigation of the polymer miscibility. To compare by NRET the actual degree of miscibility of the PVC/s.PMMA, PVC/PCL, and PVC/SAN polymer pairs, each polymer is to be labeled with a fluorescent chromophore to an extent of 1 or 2 mol %. This paper reports efficient pathways to attach anthracene (acceptor) or naphthalene (donor) onto preformed PVC, s.PMMA, and SAN samples. All the attempts for grafting carbazole (donor) moieties have failed, as well as any labeling of PCL whatever the nature of the chromophore.  相似文献   

19.
纳米复合材料具有许多优异的性能,但是由于纳米粒子常常很难以纳米尺寸均匀地分散在基体中,有时即使实现了纳米级分散,在后加工或应用过程中又会发生二次团聚,使得纳米材料的特性不能充分发挥.因此,要获得性能优异的纳米复合材料首先必须解决纳米材料在基体中的均匀、稳定分散问题.  相似文献   

20.
Semi-interpenetrating polymer networks (semi-IPNs) of poly(ethylene glycol) (PEG) in poly(trimethylolpropane triacrylate) (TMPTA) were synthesized from PEG melts in neat TMPTA monomer, using PEG of molecular weights from 4000 to 100,000 g/mol. Differential scanning calorimetry and transmission electron microscopy were used to examine phase separation occurring during network formation. The degree of phase separation was observed to depend upon the rate of PEG aggregation relative to the rate of network formation during TMPTA polymerization. Higher molecular weight PEG and acrylate-functionalized PEG formed more phase-mixed networks compared to lower molecular weight PEG; acetatefunctionalized PEG showed no difference from unmodified PEG in the extent of phase mixing. For networks that demonstrated phase separation, the PEG was observed to be in two states: some being phase mixed and solvent inextractable, and some being phase separated and solvent extractable. Phase-mixed networks could be obtained from this thermodynamically incompatible polymer pair utilizing rapid photopolymerization systems to overcome PEG phase aggregation and kinetically entrap the PEG in a nonequilibrium phase-mixed state. These mixed-phase semi-IPNs of PEG and TMPTA may be useful in biological applications where the presence of PEG is desired throughout the bulk matrix rather than as a surface graft to reduce biological interactions. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号