首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependence of the Young’s modulus E of paramagnetic lutetium has been studied. It has been shown that an important reason for the dependence E(T) is thermal expansion of the crystal lattice, which also leads to a change in the Debye temperature Θ. The effect of this factor is also revealed in the thermodynamic properties of metals. In particular, we have shown that there is another contribution to variation of the total specific heat of lutetium, associated with the Θ(T) dependence and comparable with the electronic contribution. Fiz. Tverd. Tela (St. Petersburg) 40, 1581–1584 (September 1998)  相似文献   

2.
Measurements of the temperature dependence of the electrical resistance R(T) below the superconducting transition temperature have been performed at different values of the transport current in HTSC+CuO composites modeling a network of weak S-I-S Josephson junctions (S—superconductor, I—insulator). It has been shown experimentally that the temperature dependence R(T) at different values of the transport current is adequately described by means of the mechanism of thermally activated phase slippage developed by Ambegaokar and Halperin for tunnel structures. Within the framework of this model we have numerically calculated the temperature dependence of the critical current J c(T) as defined by various criteria. Qualitative agreement obtains between the measured and calculated temperature dependences J c(T). Fiz. Tverd. Tela (St. Petersburg) 41, 969–974 (June 1999)  相似文献   

3.
Raman spectra have been investigated in PbTiO3 thin films grown on Si by metalorganic chemical vapor deposition. A large grazing-angle scattering technique was taken to measure the temperature dependence of Raman spectra below room temperature. All Raman modes in the thin films are assigned and compared with those in the bulk single crystal, a newA 1(TO) soft mode at 104 cm–1 was recorded which satisfies the Curie-Weiss relation 2 =A(T cT). Intensities of theA 1(1TO) andE(1TO) modes were anomalously strengthened with increasing temperature. Raman modes for the thin films exhibit remarkable frequency downshift and upshift which is related to the effect of internal stress.  相似文献   

4.
The effect of atomic disorder on the electron transport and the magnetoresistance (MR) of Co2CrAl Heusler alloy (HA) films has been investigated. We show that Co2CrAl films with L21 order exhibit a negative value for the temperature coefficient of resistivity (TCR) in a temperature range of 10 < T < 290 K, and the temperature dependence of electric conductivity varies as T 3/2 similarly to that of the zero-gap semiconductors. The atomic or the site disorder on the way of L21 → B2 → A2 → amorphous state in Co2CrAl HA films causes the deviation from this dependence: reduction in the absolute value of TCR as well as decrease in the resistivity down to ϱ(T = 293 K) ∼ 200 μΩ cm in comparison to ϱ(T = 293 K) ∼ 230 μΩ cm typical for the Co2CrAl films with L21 order. The magnetic-field dependence of MR of the Co2CrAl films with L21 order is determined by two competing contributions: a positive Lorentz scattering and a negative s-d scattering. The atomic disorder in Co2CrAl films drastically changes MR behavior due to its strong influence on the magnetic properties.  相似文献   

5.
The ferromagnetic resonance in Y3Fe5−x GaxO12 (0⩽x⩽0.63), iron garnet films obtained by liquid phase epitaxy on substrates of gadolinium gallium garnet is studied at temperatures of 213–353 K. It is found that in the case of liquid phase epitaxy the distribution coefficient of the gallium in the films varies from 2.2 to 4.0, depending on the composition and growth conditions. It is found that the resonance magnetic fields can be temperature stabilized through temperature-induced changes in the saturation magnetization and anisotropy field. Zh. Tekh. Fiz. 68, 46–50 (September 1998)  相似文献   

6.
Data on the thermal conductivity ϰ ph of the cluster lattice of synthetic opals are analyzed. All opals are divided into two groups according to the temperature dependence of their ϰ ph. These are opals-1, whose thermal conductivity behaves like ϰ ph(T) of quasi-crystalline materials, and opals-2, with a ϰ ph(T) dependence typical of classical amorphous solids. Possible reasons for this difference are considered. An attempt is made to explain the complex temperature hysteresis in ϰ ph(T) observed earlier in opals-2. Fiz. Tverd. Tela (St. Petersburg) 39, 392–398 (February 1997)  相似文献   

7.
We report results obtained with two different experimental set-ups in state-of-the-art YBCO thin films as similar as possible, prepared by pulsed laser deposition on LaAlO3 substrates: a surface impedance measurement on 4000 ? thick films using a parallel plate resonator (10 GHz), and a far infrared transmission (100-400 GHz) measurement which requires thinner (1000 ?) samples. The former measurement yields the temperature variation of the penetration depth λ(T) and the real part of the conductivity, provided the absolute value of λ(T) is known. The latter yields the imaginary part of the conductivity, hence the absolute value of the penetration depth, as well as its temperature dependence at the measuring frequency. Combining these two experiments, we establish a quasi-linear temperature variation of λ(T), with a 2 ? K-1 low temperature slope, and a fairly large zero temperature value λ(T = 0)=(1800±200) ? . The scattering rate of the quasi-particles calculated from a two-fluids model shows that the films compare to good quality single crystals, where twice a larger slope has been found. This surprising behavior is described in detail, including an in-depth structural analysis of the samples in order to evaluate their similarities. We find that the 10 GHz data obtained in the thickest films can be fitted to the dirty d-wave mode in the unitarity limit, with an extrapolated slope of 3 ? K-1, but yield a scattering rate that is difficult to reconcile with the high T c (92 K) of the films. Received 7 May 2001 and Received in final form 18 October 2001  相似文献   

8.
The magnetic properties of single crystals of erbium iron garnet (ErIG) were studied in applied fields up to 150kOe between 1.4 and 300K. At low temperature, the macroscopic easy direction of the bulk magnetization is [100]; below the compensation temperature (80±2K), the magnetization presents non-linear field evolution. On the assumption of an isolated ground doublet, the anisotropy constantsK i (i=1,2) of ErIG are given byK i (Er)+K i (YIG); theK i are calculated as a function of theG andg tensor components. It is worthwhile noting that theK i (Er) are strongly temperature dependent; so at low temperature the anisotropy of the garnet is determined by the rare earth ions, while in the 50 K regionK 1(Er) becomes comparable toK 1(YIG) with the opposite sign which results in a very weak anisotropy of the garnet. Above 50 K,K 1(YIG) is predominant and the Fe3+ ions determine the garnet anisotropy.  相似文献   

9.
A study is reported of the magnetic, electrical, and crystallographic properties of La1−x SrxMnO3 (0.15⩽x⩽0.23) epitaxial films grown on single-crystal substrates of (001)ZrO2(Y2O3) having the fluorite structure and (001)LaAlO3 having the perovskite structure. It was found that films with close compositions for x=0.15 and 0.16, grown on different substrates, have different properties, namely, the film on a fluorite substrate is semiconducting and has a coercive strength 30 times that of the film on a perovskite substrate; the temperature dependence of electrical resistance of the latter film has a maximum around the Curie point T C and follows metallic behavior for T<T C. These differences are explained as due to different structures of the films. The x=0.23 film on the perovskite substrate has been found to exhibit a combination of giant magnetoresistance at room temperature with a resistance of ≈300 Ω which is useful for applications. The maxima in resistance and absolute value of negative magnetoresistance are accounted for by the existence of two-phase magnetic states in these films. Fiz. Tverd. Tela (St. Petersburg) 40, 290–294 (February 1998)  相似文献   

10.
The temperature dependence of the Hall coefficient in the interval 1.8–300 K is investigated in detail in high-quality single-crystal samples of a Kondo insulator — iron monosilicide. It is established that the parameter R H (T,H=12.5 kOe) changes sign twice in the temperature interval employed, and at temperatures below T m ≈7 K an anomalous (magnetic) component appears in the angular and field dependences of the Hall voltage. The results of the experimental investigations of R H (T,H 0 ) in FeSi are discussed on the basis of the phase diagram in the model of an excitonic insulator. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 10, 774–778 (25 November 1998)  相似文献   

11.
The temperature dependence of the conductance of porous silicon doped with manganese up to densities corresponding to the metallic side of the Anderson transition is investigated. It is found that in the temperature range below T=40–60 K the conductance decreases with T as G(T)∝T −1/3. This behavior corresponds to one-dimensional electron localization in silicon wires under conditions of inelastic electron-electron collisions with a small energy transfer. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 4, 265–269 (25 February 1998)  相似文献   

12.
We report measurements of the temperature dependence of the electrical resistivity, ρ(T), and magnetic pen-etration depth, λ(T), for polycrystalline samples of Eu0.5K0.5Fe2As2 with T c = 31 K. ρ(T) follows a linear temperature dependence above T c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu3+ moments. The article is published in the original.  相似文献   

13.
A theoretical framework for treating the effects of magnetic fieldH on the pairing theory of superconductivity is considered, where the field is taken in an arbitrary direction with respect to crystal axes. This is applicable to closed, as well as open normal state Fermi surface (FS), including simple layered metals. The orbital effects of the magnetic field are treated semiclassically while retaining the full anisotropic paramagnetic contribution. Explicit calculations are presented in the limits |H| → |H c2(T)|,T ∼ 0 andTT c(|H|), |H| ∼ 0. Effects of weak nonmagnetic impurity scattering, without vertex corrections, have also been taken into account in a phenomenological way. The final results for the case of open FS and layered materials are found to differ considerably from those of the closed FS. For example, an important parameter,h(T=0)=|Hc2(0)|/[-Tδ|H c2 TT]T{s0} for the case of a FS open ink z-direction with thek z-bandwidth, 4t 3, very small compared to the Fermi energy,E F, is close to 0.5906, compared to 0.7273 for the closed FS, in the clean limit. Analytical results are given for the magnetic field dependence ofT c and the temperature dependence of H c2 for a model of layered superconductors with widely open FS. For a set of band structure parameters for YBa2Cu3O7 used elsewhere, we find reasonable values for the upper critical fieldH c2(0), the slope (dH c2/dT)T c0, anisotropic coherence lengths ζi(T=0),i=x, y, z, and (dT c/d|H|)|H| → 0.  相似文献   

14.
The dynamic and static properties of a supercooled (non-entangled) polymer melt are investigated via molecular-dynamics (MD) simulations. The system is confined between two completely smooth and purely repulsive walls. The wall-to-wall separation (film thickness), D, is varied from about 3 to about 14 times the bulk radius of gyration. Despite the geometric confinement, the supercooled films exhibit many qualitative features which were also observed in the bulk and could be analyzed in terms of mode-coupling theory (MCT). Examples are the two-step relaxation of the incoherent intermediate scattering function, the time-temperature superposition property of the late time α-process and the space-time factorization of the scattering function on the intermediate time scale of the MCT β-process. An analysis of the temperature dependence of the α-relaxation time suggests that the critical temperature, T c, of MCT decreases with D. If the confinement is not too strong ( D≥10monomer diameter), the static structure factor of the film coincides with that of the bulk when compared for the same distance, T - T c(D), to the critical temperature. This suggests that T - T c(D) is an important temperature scale of our model both in the bulk and in the films. Received 12 September 2001  相似文献   

15.
A theoretical study is reported of fluctuations in smectic layer displacements and of the correlations between them in free-standing smectic-A films formed of liquid-crystal compounds with smectic-A-isotropic liquid (Sm-A-I) and Sm-A-nematic (Sm-A-N) bulk phase transitions. The study took into account the dependence of the elastic constants for bending, K, and tension (compression), B, of smectic layers on distance to the free film surfaces. The calculations are compared with the results obtained within Hołyst’s model for spatially uniform, free-standing smectic-A films. It has been established that, below the temperature at which smectic order in the bulk of a liquid crystal disappears, taking into account the profiles of the elastic moduli K and B does not produce noticeable differences from this model. However, at temperatures considerably above the Sm-A-I and Sm-A-N phase transitions, their inclusion results in considerable discrepancies from the predictions of Hołyst’s model. Fiz. Tverd. Tela (St. Petersburg) 41, 1882–1889 (October 1999)  相似文献   

16.
The temperature dependence of isobaric heat capacity and [411] interplanar spacing in lanthanum and samarium hexaborides have been determined experimentally within the 5–300 K region. The variation of the lattice parameters and thermal expansion coefficients α(T) with temperature has been calculated. Fiz. Tverd. Tela (St. Petersburg) 40, 2051–2053 (November 1998)  相似文献   

17.
The temperature R(T) and field R(H) dependences of the electrical resistance in the compound Eu0.7 A 0.3MnO3 (A=Ca, Sr) are investigated in the temperature range 4.2–200 K in magnetic fields up to 14 T. Above the antiferromagnetic transition temperature T a, the function R(T) is semiconducting in character. Application of a magnetic field H that exceeds a certain critical value H c changes the character of the function R(T) for Eu0.7Sr0.3MnO3 to metallic (dR/dT>0). For T<T a and H<H c a jump in the resistance is observed indicating instability of the electronic state caused by competition between charge and spin ordering of the Mn ions of different valences. Fiz. Tverd. Tela (St. Petersburg) 40, 708–712 (April 1998)  相似文献   

18.
Summary It is shown that the behaviour of the temperature dependence of the critical current in polycrystalline thin films of high-T c superconductors depends crucially on the assumption made concerning the nature of the intergranular material. The usual assumption of a superconductor-insulator-superconductor (=SIS) ?sandwich? between each grain leads to a crossover fromI c∼(1−T/T c) toI c∼(1−T/T c)3/2, for temperatures nearT c (whereI c is the critical current,T the absolute temperature, andT c the superconducting transition temperature). Instead, for a superconductor-normal metal-superconductor (=SNS) sandwich the dependenceI c∼(1−T/T c)2 is found for all temperatures. Consideration is given to the effect of self-magnetic field on the analysis. The comparison between expressions for continuous and granular systems is extended. Due to the relevance of its scientific content, this paper has been given priority by the Journal Direction.  相似文献   

19.
The anisotropy of the magnetic susceptibility χ and the influence of oxygen vacancies in CuO single crystals on it are investigated. The temperature dependences of χ(T) along the a, b, and c axes in the range 60<T<600 K and the behavior of the field dependence of the magnetization σ(H) above and below the Néel temperature T N are plotted for a crystal before and after heat treatment. The χ(T) curves have the form characteristic of low-dimensional systems, which become three-dimensional when the temperature is lowered. The character of the χ(T) curves remains unchanged after annealing. Oxygen vacancies have practically no influence on the a-axis magnetic susceptibility, but they alter the absolute values of the b-and c-axis susceptibilities. The significant effects of reducing the oxygen concentration include a decrease in the magnitude of the low-temperature anomaly (increase) in χ and an increase in the minimum value of χ. The results of the calculations of the exchange parameter I/k and the g factor are discussed in terms of the Heisenberg and Ising models for a one-dimensional system. Zh. éksp. Teor. Fiz. 113, 1026–1035 (March 1998)  相似文献   

20.
The temperature dependence of the excess conductivity Δσ for Δσ = A(1 ? T/T*)exp(Δ*/T) (YBCO) epitaxial films is analyzed. The excess conductivity is determined from the difference between the normal resistance extrapolated to the low-temperature range and the measured resistance. It is demonstrated that the temperature dependence of the excess conductivity is adequately described by the relationship Δσ = A(1 ? T/T*)exp(Δ*/T). The pseudogap width and its temperature dependence are calculated under the assumption that the temperature behavior of the excess conductivity is associated with the formation of the pseudogap at temperatures well above the critical temperature T c of superconductivity. The results obtained are compared with the available experimental and theoretical data. The crossover to fluctuation conductivity near the critical temperature T c is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号