首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection thresholds were measured for different spatial configurations of 500- and 1000-Hz pure-tone targets and broadband maskers. Sources were simulated using individually measured head-related transfer functions (HRTFs) for source positions varying in both azimuth and distance. For the spatial configurations tested, thresholds ranged over 50 dB, primarily as a result of large changes in the target-to-masker ratio (TMR) with changes in target and masker locations. Intersubject differences in both HRTFs and in binaural sensitivity were large; however, the overall pattern of results was similar across subjects. As expected, detection thresholds were generally smaller when the target and masker were separated in azimuth than when they were at the same location. However, in some cases, azimuthal separation of target and masker yielded little change or even a small increase in detection threshold. Significant intersubject differences occurred as a result both of differences in monaural and binaural acoustic cues in the individualized HRTFs and of different binaural contributions to performance. Model predictions captured general trends in the pattern of spatial unmasking. However, subject-specific model predictions did not account for the observed individual differences in performance, even after taking into account individual differences in HRTF measurements and overall binaural sensitivity. These results suggest that individuals differ not only in their overall sensitivity to binaural cues, but also in how their binaural sensitivity varies with the spatial position of (and interaural differences in) the masker.  相似文献   

2.
前方空间环绕声的四扬声器虚拟重放   总被引:1,自引:0,他引:1       下载免费PDF全文
考虑头部转动带来的动态因素对听觉垂直定位的贡献,提出了前方空间环绕声的四扬声器虚拟重放方法。4个扬声器分别布置在水平面左前、右前以及高仰角的左前上、右前上方向,并采用听觉传输信号处理的方法将多通路空间环绕声信号转换为4个扬声器的重放信号。以9.1通路空间环绕声虚拟重放为例,采用头相关传输函数对双耳声压及其包含的定位因素进行分析表明,该方法可以产生正确的双耳时间差及其随头部转动的变化,从而产生合适的侧向定位双耳因素和垂直定位的动态因素。而心理声学实验结果表明,该方法可以重放稳定的前方空间的水平和垂直虚拟源。因此,四扬声器布置结合听觉传输处理足以重放前方空间环绕声的垂直定位信息,实现多通路空间环绕声的向下混合与简化。   相似文献   

3.
The present study measured the head-related transfer functions (HRTFs) of the Mongolian gerbil for various sound-source directions, and explored acoustical cues for sound localization that could be available to the animals. The HRTF exhibited spectral notches for frequencies above 25 kHz. The notch frequency varied systematically with source direction, and thereby characterized the source directions well. The frequency dependence of the acoustical axis, the direction for which the HRTF amplitude was maximal, was relatively irregular and inconsistent between ears and animals. The frequency-by-frequency plot of the interaural level difference (ILD) exhibited positive and negative peaks, with maximum values of 30 dB at around 30 kHz. The ILD peak frequency had a relatively irregular spatial distribution, implying a poor sound localization cue. The binaural acoustical axis (the direction with the maximum ILD magnitude) showed relatively orderly clustering around certain frequencies, the pattern being fairly consistent among animals. The interaural time differences (ITDs) were also measured and fell in a +/- 120 micros range. When two different animal postures were compared (i.e., the animal was standing on its hind legs and prone), small but consistent differences were found for the lower rear directions on the HRTF amplitudes, the ILDs, and the ITDs.  相似文献   

4.
Traditional methods often only use monaural masking models to decorrelate input signals for stereo acoustic echo cancellation. Whereas, it seems more reasonable to use binaural masking models for the following two reasons. First, stereo signals are heard by two ears rather than just one. Second, psychoacoustic researchers have already shown that there are obvious masking level differences between binaural masking models and monaural masking models. By studying binaural masking level difference models, we first introduce a simplified binaural masking model for stereo acoustic echo cancellation. Considering that the interaural time difference is dominant at low frequencies (??1.5  kHz) and the interaural level difference is a major cue at higher frequencies, we propose to use different signal decorrelation schemes at these two frequency bands. In the low-frequency band, a pitch-driven sinusoidal injection scheme is proposed to maintain the interaural time difference, where the amount of injection is determined by the proposed binaural masking model. In the high-frequency band, a modified sinusoidal phase modulation scheme is applied to make a trade-off between preserving the interaural level difference and decorrelating the stereophonic input signals. Assessment results show that the proposed method can effectively improve the non-unique problem and retain good speech quality.  相似文献   

5.
Temporal modulation transfer functions (TMTFs) were measured for detection of monaural sinusoidal amplitude modulation and dynamically varying interaural level differences for a single set of listeners. For the interaural TMTFs, thresholds are the modulation depths at which listeners can just discriminate interaural envelope-phase differences of 0 and 180 degrees. A 5-kHz pure tone and narrowband noises, 30- and 300-Hz wide centered at 5 kHz, were used as carriers. In the interaural conditions, the noise carriers were either diotic or interaurally uncorrelated. The interaural TMTFs with tonal and diotic noise carriers exhibited a low-pass characteristic but the cutoff frequencies changed nonmonotonically with increasing bandwidth. The interaural TMTFs for the tonal carrier began rolling off approximately a half-octave lower than the tonal monaural TMTF (approximately 80 Hz vs approximately 120 Hz). Monaural TMTFs obtained with noise carriers showed effects attributable to masking of the signal modulation by intrinsic fluctuations of the carrier. In the interaural task with dichotic noise carriers, similar masking due to the interaural carrier fluctuations was observed. Although the mechanisms responsible for differences between the monaural and interaural TMTFs are unknown, the lower binaural TMTF cutoff frequency suggests that binaural processing exhibits greater temporal limitation than monaural processing.  相似文献   

6.
Two sound localization algorithms based on the head-related transfer function were developed. Each of them uses the interaural time delay, interaural level difference, and monaural spectral cues to estimate the location of a sound source. Given that most localization algorithms will be required to function in background noise, the localization performance of one of the algorithms was tested at signal-to-noise ratios (SNRs) from 40 to -40 dB. Stimuli included ten real-world, broadband sounds located at 5 degrees intervals in azimuth and at 0 degrees elevation. Both two- and four-microphone versions of the algorithm were implemented to localize sounds to 5 degrees precision. The two-microphone version of the algorithm exhibited less than 2 degrees mean localization error at SNRs of 20 dB and greater, and the four-microphone version committed approximately 1 degrees mean error at SNRs of 10 dB or greater. Potential enhancements and applications of the algorithm are discussed.  相似文献   

7.
Ambisonics is a series of spatial sound reproduction system based on spatial harmonics decomposition and each order approximation of sound field. Ambisonics signals are originally intended for loudspeakers reproduction. By using head-related transfer functions (HRTFs) filters, binaural Ambisonics converts the Ambisonics signals for static or dynamic headphone reproduction. In present work, the performances of static and dynamic binaural Ambisonics reproduction are evaluated and compared. The mean binaural pressure errors across target source directions are first analyzed. Then a virtual source localization experiment is conducted, and the localization performances are evaluated by analyzing the percentages of front-back and up-down confusion, the mean angle error and discreteness in the localization results. The results indicate that binaural Ambsonics reproduction with insufficiently high order (for example, 5-10 order) is unable to recreate correct high-frequency magnitude spectra in binaural pressures, resulting in degradation in localization for static reproduction. Because dynamic localization cue is included, dynamic binaural Ambisoncis reproduction yields obviously better localization performance than static reproduction with the same order. Even a 3-order dynamic binaural Ambisoncis reproduction exhibits appropriate localizations performance.  相似文献   

8.
The acoustical cues for sound location are generated by spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although rats have been a common model system for anatomy, physiology, and psychophysics of localization, there have been few studies of the acoustical cues available to rats. Here, directional transfer functions (DTFs), the directional components of the head-related transfer functions, were measured in six adult rats. The cues to location were computed from the DTFs. In the frontal hemisphere, spectral notches were present for frequencies from approximately 16 to 30 kHz; in general, the frequency corresponding to the notch increased with increases in source elevation and in azimuth toward the ipsilateral ear. The maximum high-frequency envelope-based interaural time differences (ITDs) were 130 mus, whereas low-frequency (<3.5 kHz) fine-structure ITDs were 160 mus; both types of ITDs were larger than predicted from spherical head models. Interaural level differences (ILDs) strongly depended on location and frequency. Maximum ILDs were <10 dB for frequencies <8 kHz and were as large as 20-40 dB for frequencies >20 kHz. Removal of the pinna eliminated the spectral notches, reduced the acoustic gain and ILDs, altered the acoustical axis, and reduced the ITDs.  相似文献   

9.
提出一种分析头相关传输函数(head-related transfer function,HRTF)幅度谱的听觉空间分辨阈值模型。采用数值计算得到的高空间分辨率HRTF数据,计算了声源空间位置变化引起的HRTF幅度谱的变化,进一步利用Moore响度模型分析双耳响度级差、双耳响度级谱和总响度级等三个听觉感知量的变化。根据现有的3个听觉感知量最小可察觉差异,模型利用双耳响度级差和双耳响度级谱的变化得到的估计结果与心理声学实验一致,因此是一种有效预测听觉空间分辨阈值的方法,可用于为简化虚拟听觉信号处理和数据储存。   相似文献   

10.
In a previous paper (Arnold and Burkard, 1998) a dichotic f2-f1 difference tone (DT) auditory evoked potential from the chinchilla inferior colliculus (IC) was measured while presenting f1 (2000 Hz) to one ear and f2 (2100 Hz) to the other ear. This measurement paradigm could be used as a means to study binaural processing in an unanesthetized animal model. However, it is possible that this response is actually generated peripherally, as a result of acoustic crossover. The purpose of the present set of experiments was to investigate whether the dichotic DT is a true binaural phenomenon. Recordings were made from chronically implanted IC electrodes in unanesthetized, monaural chinchillas (left cochlea destroyed). In experiment 1, interaural attenuation (IA) was measured in two ways. First, IA was measured by comparing IC evoked potential thresholds obtained when stimulating the normal right ear and the dead left ear, using tone bursts (0.5-8 kHz). Mean values of interaural attenuation ranged from 50-65 dB across frequency (55 dB at 2000 Hz). Next, the DT was measured monaurally using f1 = 2000 and f2 = 2100 (L1 = L2). By comparing the mean DT input/output functions for monaural stimulation of the right and left ears, a mean value of IA for the tonal pair was estimated (approximately 69 dB). In experiment 2, the DT was measured with right monaural stimulation, while varying the relative levels of the primaries. A small DT could be seen with primary levels up to 30 dB apart, but not for greater level differences. Differences substantially greater than 30 dB would be expected in the crossover situation based upon IA. In experiment 3, the stimuli were presented dichotically (f1 to right ear, f2 to left ear and vice versa, L1 = L2) to determine whether acoustic crosstalk to the normal right ear would generate a DT. No DT was reliably observed in this condition. Taken together, these results suggest that the dichotic DT is a true binaural phenomenon, and not simply attributable to acoustic crossover.  相似文献   

11.
The binaural system is well-known for its sluggish response to changes in the interaural parameters to which it is sensitive. Theories of binaural unmasking have suggested that detection of signals in noise is mediated by detection of differences in interaural correlation. If these theories are correct, improvements in the intelligibility of speech in favorable binaural conditions is most likely mediated by spectro-temporal variations in interaural correlation of the stimulus which mirror the spectro-temporal amplitude modulations of the speech. However, binaural sluggishness should limit the temporal resolution of the representation of speech recovered by this means. The present study tested this prediction in two ways. First, listeners' masked discrimination thresholds for ascending vs descending pure-tone arpeggios were measured as a function of rate of frequency change in the NoSo and NoSpi binaural configurations. Three-tone arpeggios were presented repeatedly and continuously for 1.6 s, masked by a 1.6-s burst of noise. In a two-interval task, listeners determined the interval in which the arpeggios were ascending. The results showed a binaural advantage of 12-14 dB for NoSpi at 3.3 arpeggios per s (arp/s), which reduced to 3-5 dB at 10.4 arp/s. This outcome confirmed that the discrimination of spectro-temporal patterns in noise is susceptible to the effects of binaural sluggishness. Second, listeners' masked speech-reception thresholds were measured in speech-shaped noise using speech which was 1, 1.5, and 2 times the original articulation rate. The articulation rate was increased using a phase-vocoder technique which increased all the modulation frequencies in the speech without altering its pitch. Speech-reception thresholds were, on average, 5.2 dB lower for the NoSpi than for the NoSo configuration, at the original articulation rate. This binaural masking release was reduced to 2.8 dB when the articulation rate was doubled, but the most notable effect was a 6-8 dB increase in thresholds with articulation rate for both configurations. These results suggest that higher modulation frequencies in masked signals cannot be temporally resolved by the binaural system, but that the useful modulation frequencies in speech are sufficiently low (<5 Hz) that they are invulnerable to the effects of binaural sluggishness, even at elevated articulation rates.  相似文献   

12.
A study was made of the effect of interaural time delay (ITD) and acoustic headshadow on binaural speech intelligibility in noise. A free-field condition was simulated by presenting recordings, made with a KEMAR manikin in an anechoic room, through earphones. Recordings were made of speech, reproduced in front of the manikin, and of noise, emanating from seven angles in the azimuthal plane, ranging from 0 degree (frontal) to 180 degrees in steps of 30 degrees. From this noise, two signals were derived, one containing only ITD, the other containing only interaural level differences (ILD) due to headshadow. Using this material, speech reception thresholds (SRT) for sentences in noise were determined for a group of normal-hearing subjects. Results show that (1) for noise azimuths between 30 degrees and 150 degrees, the gain due to ITD lies between 3.9 and 5.1 dB, while the gain due to ILD ranges from 3.5 to 7.8 dB, and (2) ILD decreases the effectiveness of binaural unmasking due to ITD (on the average, the threshold shift drops from 4.6 to 2.6 dB). In a second experiment, also conducted with normal-hearing subjects, similar stimuli were used, but now presented monaurally or with an overall 20-dB attenuation in one channel, in order to simulate hearing loss. In addition, SRTs were determined for noise with fixed ITDs, for comparison with the results obtained with head-induced (frequency dependent) ITDs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Eight listeners were required to locate a train of 4.5-kHz high-pass noise bursts emanating from loudspeakers positioned +/- 30, +/- 20, +/- 10, and 0 deg re: interaural axis. The vertical array of loudspeakers was placed at 45, 90, and 135 deg left of midline. The various experimental conditions incorporated binaural and monaural listening with the latter utilizing the ear nearest or ear farthest from the sound source. While performance excelled when listening with only the near ear, the contribution of the far ear was statistically significant when compared to localization performance when both ears were occluded. Based on head related transfer functions for stimuli whose bandwidth was 1.0 kHz, four spectral cues were selected as candidates for influencing location judgments. Two of them associated relative changes in energy across center frequencies (CFs) with vertical source positions. The other two associated an absolute minimum (maximum) energy for specific CFs with a vertical source position. All but one cue when measured for the near ear could account for localization proficiency. On the other hand, when listening with the far ear, maximum energy at a specific CF outperformed the remaining cues in accounting for localization proficiency.  相似文献   

14.
An experiment was conducted to measure observers' ability to detect time-varying interaural intensity differences (IIDs). In a two-interval forced-choice task, observers discriminated a binaural amplitude modulated (AM) noise in which the modulating sinusoid was interaurally in-phase from the same AM noise in which the modulator was interaurally phase-reversed. The latter stimulus produces a sinusoidally varying IID whose rate and peak IID depend on the frequency (fm) and depth (m) of modulation. The carrier was a narrow-band noise, interaurally uncorrelated, centered at 500, 1000, or 4000 Hz. Presentation level was 75 dB SPL; duration was 1.0 s. For a given fm, m was varied in an adaptive procedure to estimate the depth required for 71% discriminability (mthr). Three of the four observers displayed "low-pass" modulation functions: at 500 Hz, as fm increased from 0-50 Hz, mthr increased from 0.08 (IID = 1.3 dB) to 0.50 (peak IID = 9.5 dB). At 1000 and 4000 Hz observers were more sensitive to IID and the functions (mthr vs fm) were flatter than at 500 Hz. Comparison of these data to previously published data indicates that the binaural system can follow fluctuations in IID more efficiently than it can follow fluctuations in interaural time difference, although there are large individual differences in subjects' capacity to process these two types of binaural cues.  相似文献   

15.
Modulation thresholds were measured in three subjects for a sinusoidally amplitude-modulated (SAM) wideband noise (the signal) in the presence of a second amplitude-modulated wideband noise (the masker). In monaural conditions (Mm-Sm) masker and signal were presented to only one ear; in binaural conditions (M0-S pi) the masker was presented diotically while the phase of modulation of the SAM noise signal was inverted in one ear relative to the other. In experiment 1 masker modulation frequency (fm) was fixed at 16 Hz, and signal modulation frequency (fs) was varied from 2-512 Hz. For monaural presentation, masking generally decreased as fs diverged from fm, although there was a secondary increase in masking for very low signal modulation frequencies, as reported previously [Bacon and Grantham, J. Acoust. Soc. Am. 85, 2575-2580 (1989)]. The binaural masking patterns did not show this low-frequency upturn: binaural thresholds continued to improve as fs decreased from 16 to 2 Hz. Thus, comparing masked monaural and masked binaural thresholds, there was an average binaural advantage, or masking-level difference (MLD) of 9.4 dB at fs = 2 Hz and 5.3 dB at fs = 4 Hz. In addition, there were positive MLDs for the on-frequency condition (fm = fs = 16 Hz: average MLD = 4.4 dB) and for the highest signal frequency tested (fs = 512 Hz: average MLD = 7.3 dB). In experiment 2 the signal was a SAM noise (fs = 16 Hz), and the masker was a wideband noise, amplitude-modulated by a narrow band of noise centered at fs. There was no effect on monaural or binaural thresholds as masker modulator bandwidth was varied from 4 to 20 Hz (the average MLD remained constant at 8.0 dB), which suggests that the observed "tuning" for modulation may be based on temporal pattern discrimination and not on a critical-band-like filtering mechanism. In a final condition the masker modulator was a 10-Hz-wide band of noise centered at the 64-Hz signal modulation frequency. The average MLD in this case was 7.4 dB. The results are discussed in terms of various binaural capacities that probably play a role in binaural release from modulation masking, including detection of varying interaural intensity differences (IIDs) and discrimination of interaural correlation.  相似文献   

16.
Bilateral cochlear implant patients are unable to localize as well as normal hearing listeners. Although poor sensitivity to interaural time differences clearly contributes to this deficit, it is unclear whether deficits in terms of interaural level differences are also a contributing factor. In this study, localization was tested while manipulating interaural time and level cues using head-related transfer functions. The results indicate that bilateral cochlear implant users' ability to localize based on interaural level differences is actually greater than that of untrained normal hearing listeners.  相似文献   

17.
18.
Binaural speech intelligibility in noise for hearing-impaired listeners   总被引:2,自引:0,他引:2  
The effect of head-induced interaural time delay (ITD) and interaural level differences (ILD) on binaural speech intelligibility in noise was studied for listeners with symmetrical and asymmetrical sensorineural hearing losses. The material, recorded with a KEMAR manikin in an anechoic room, consisted of speech, presented from the front (0 degree), and noise, presented at azimuths of 0 degree, 30 degrees, and 90 degrees. Derived noise signals, containing either only ITD or only ILD, were generated using a computer. For both groups of subjects, speech-reception thresholds (SRT) for sentences in noise were determined as a function of: (1) noise azimuth, (2) binaural cue, and (3) an interaural difference in overall presentation level, simulating the effect of a monaural hearing acid. Comparison of the mean results with corresponding data obtained previously from normal-hearing listeners shows that the hearing impaired have a 2.5 dB higher SRT in noise when both speech and noise are presented from the front, and 2.6-5.1 dB less binaural gain when the noise azimuth is changed from 0 degree to 90 degrees. The gain due to ILD varies among the hearing-impaired listeners between 0 dB and normal values of 7 dB or more. It depends on the high-frequency hearing loss at the side presented with the most favorable signal-to-noise (S/N) ratio. The gain due to ITD is nearly normal for the symmetrically impaired (4.2 dB, compared with 4.7 dB for the normal hearing), but only 2.5 dB in the case of asymmetrical impairment. When ITD is introduced in noise already containing ILD, the resulting gain is 2-2.5 dB for all groups. The only marked effect of the interaural difference in overall presentation level is a reduction of the gain due to ILD when the level at the ear with the better S/N ratio is decreased. This implies that an optimal monaural hearing aid (with a moderate gain) will hardly interfere with unmasking through ITD, while it may increase the gain due to ILD by preventing or diminishing threshold effects.  相似文献   

19.
Five bilateral cochlear implant users were tested for their localization abilities and speech understanding in noise, for both monaural and binaural listening conditions. They also participated in lateralization tasks to assess the impact of variations in interaural time delays (ITDs) and interaural level differences (ILDs) for electrical pulse trains under direct computer control. The localization task used pink noise bursts presented from an eight-loudspeaker array spanning an arc of approximately 108 degrees in front of the listeners at ear level (0-degree elevation). Subjects showed large benefits from bilateral device use compared to either side alone. Typical root-mean-square (rms) averaged errors across all eight loudspeakers in the array were about 10 degrees for bilateral device use and ranged from 20 degrees to 60 degrees using either ear alone. Speech reception thresholds (SRTs) were measured for sentences presented from directly in front of the listeners (0 degrees) in spectrally matching speech-weighted noise at either 0 degrees, +90 degrees or -90 degrees for four subjects out of five tested who could perform the task. For noise to either side, bilateral device use showed a substantial benefit over unilateral device use when noise was ipsilateral to the unilateral device. This was primarily because of monaural head-shadow effects, which resulted in robust SRT improvements (P<0.001) of about 4 to 5 dB when ipsilateral and contralateral noise positions were compared. The additional benefit of using both ears compared to the shadowed ear (i.e., binaural unmasking) was only 1 or 2 dB and less robust (P = 0.04). Results from the lateralization studies showed consistently good sensitivity to ILDs; better than the smallest level adjustment available in the implants (0.17 dB) for some subjects. Sensitivity to ITDs was moderate on the other hand, typically of the order of 100 micros. ITD sensitivity deteriorated rapidly when stimulation rates for unmodulated pulse-trains increased above a few hundred Hz but at 800 pps showed sensitivity comparable to 50-pps pulse-trains when a 50-Hz modulation was applied. In our opinion, these results clearly demonstrate important benefits are available from bilateral implantation, both for localizing sounds (in quiet) and for listening in noise when signal and noise sources are spatially separated. The data do indicate, however, that effects of interaural timing cues are weaker than those from interaural level cues and according to our psychophysical findings rely on the availability of low-rate information below a few hundred Hz.  相似文献   

20.
Spatial release from masking was studied in a three-talker soundfield listening experiment. The target talker was presented at 0 degrees azimuth and the maskers were either colocated or symmetrically positioned around the target, with a different masker talker on each side. The symmetric placement greatly reduced any "better ear" listening advantage. When the maskers were separated from the target by +/-15 degrees , the average spatial release from masking was 8 dB. Wider separations increased the release to more than 12 dB. This large effect was eliminated when binaural cues and perceived spatial separation were degraded by covering one ear with an earplug and earmuff. Increasing reverberation in the room increased the target-to-masker ratio (TM) for the separated, but not colocated, conditions reducing the release from masking, although a significant advantage of spatial separation remained. Time reversing the masker speech improved performance in both the colocated and spatially separated cases but lowered TM the most for the colocated condition, also resulting in a reduction in the spatial release from masking. Overall, the spatial tuning observed appears to depend on the presence of interaural differences that improve the perceptual segregation of sources and facilitate the focus of attention at a point in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号