首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of iron(III) carbodithioate complexes, (i) normal complexes, Fe(R2NCS2)3 with R2N = 4-methyl-, 4-phenyl-, or 2-methyl-piperazyl, piperidyl and thiomorpholyl and (ii) zwitterionic complexes, Fe(R2NCS2H)3X3 with R2N = 4-methyl- or 4-phenyl-piperazyl and X = Cl or Br have been synthesized. The complexes have been characterized by elemental analyses, IR spectral studies, variable-temperature magnetic susceptibility and in three cases by variable-temperature Mössbauer spectral studies. All the complexes exhibit the 2T2 (low spin, S = ) 6 A1 (high spin, S = ) spin equilibrium process. The zwitterionic carbodithioate ligands have a weaker ligand field strength than their normal ligand analogues.  相似文献   

2.
Six ternary lanthanide complexes formulated as [Ln(2, 4, 6-TMBA)3(5, 5'-DM-2, 2'-bipy)]2 (Ln = Pr 1, Nd 2, Sm 3, Eu 4, Gd 5, Dy 6; 2, 4, 6-TMBA = 2, 4, 6-trimethylbenzoate; 5, 5'-DM-2, 2'-bipy = 5, 5'-dimethyl-2, 2'-bipyridine) have been synthesized under solvothermal conditions and characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, etc. The results of crystal diffraction analysis show that complexes 1–6 are binuclear units, crystallizing in the triclinic space group. Complexes 1–5 are isostructural, and each of the central metal ions has a coordination number of 9. The asymmetric unit of complexes 1–5 consists of one Ln3+, one 5, 5'-DM-2, 2'-bipy ligand, and three 2, 4, 6-TMBA- moieties with three coordination modes: chelation bidentate, bridging bidentate, and bridging tridentate. The coordination geometry of Ln3+ is distorted monocapped square antiprismatic. The binuclear units of complexes 1–5 form a one-dimensional (1D) supramolecular chain along the c-axis via ππ stacking interactions between the 2, 4, 6-trimethylbenzoic acid rings. The 1D chains are linked to form a supramolecular two-dimensional (2D) sheet in the bc plane via ππ stacking interactions between the pyridine rings. Although the molecular formulae of complex 6 and complexes 1–5 are similar, the coordination environment of the lanthanide ions is different in the two cases. The asymmetric unit of complex 6 contains a Dy3+ ion coordinated by a bidentate 5, 5'-DM-2, 2'-bipy and three 2, 4, 6-TMBA- ligands adopting bidentate and bridging bidentate coordination modes. The Dy3+ metal center has a coordination number of 8, with distorted square antiprismatic molecular geometry. The binuclear molecule of 6 is assembled into a six-nuclear unit by ππ weak staking interactions between two 5, 5'-DM-2, 2'-bipy ligands; then, adjacent six-nuclear units form a 1D chain via offset ππ interactions between 5, 5'-DM-2, 2'-bipy ligands on different adjacent units. The adjacent 1D chains are linked by C―H···O hydrogen bonding interactions to form a 2D supramolecular structure. The thermal stability and thermal decomposition mechanism of all the complexes are investigated by the combination of thermogravimetry and infrared spectroscopy (TG/FTIR) techniques under a simulated air atmosphere in the temperature range of 298–973 K at a heating rate of 10 K·min-1. Thermogravimetric studies show that this series of complexes have excellent thermal stability. During the thermal decomposition of the complex, the neutral ligand is lost first, followed by the acid ligand, and finally, the complex is decomposed into rare earth oxides. The three-dimensional infrared results are consistent with the thermogravimetric results. The photoluminescence spectra of complex 4 show the strong characteristic luminescence of Eu3+. The five typical emission peaks at 581, 591, 621, 651, and 701 nm correspond to the 5D07F0, 5D07F1, 5D07F2, 5D07F3, and 5D07F4 electronic transitions of Eu3+, respectively. The emission at 621 nm is due to the electric dipole transition 5D07F2, while that at 591 nm is assigned to the 5D07F1 the magnetic dipole transition. The lifetime (τ) of complex 4 is calculated as 1.15 ms based on the equation τ = (B1τ12 + B2τ22))/(B1τ1 + B2τ2), and the intrinsic quantum yield is calculated to be 45.1%. Further, the magnetic properties of complex 6 in the temperature range of 2–300 K are studied under an applied magnetic field of 1000 Oe.  相似文献   

3.
We have systematically investigated the structural features, electronic properties, thermally-induced structural phase transitions and absorption spectra depending on the solvent for ten Cu(II) complexes with 3,5-halogen-substituted Schiff base ligands. Structural characterization of two new complexes, bis(N-R-1-phenylethyl- and N-R,S-2-butyl-5-bromosalicydenaminato-κ2N,O)copper(II), reveals that they afford a compressed tetrahedral trans-[CuN2O2] coordination geometry with trans-N–Cu–N = 159.4(2)° and trans-O–Cu–O = 151.7(3)° for the 1-phenylethyl complex and trans-N–Cu–N = 157.9(3)° and trans-O–Cu–O = 151.0(3)° for the 2-butyl one. All the complexes exhibit a structural phase transition by heating in the solid state regardless of their structures at room temperature. The absorption spectra of a series of ten complexes exhibit a slight shift of the d–d band at 16 000–20 000 cm−1 and remarkable shift of the π–π* band at 24 000–28 000 cm−1, which suggests that the dipole moment of the solvents presumably affects the conformation of the π-conjugated moieties of the ligands rather than the coordination environment. We have also attempted ‘photochromic solute-induced solvatochromism’ by a system of bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato-κ2N,O)copper(II) and photochromic 4-hydroxyazobenzene in chloroform solution. We successfully observed a change of the d–d and π–π* bands of the complex in the absorption spectra caused by cistrans photoisomerization of 4-hydroxyazobenzene.  相似文献   

4.
Complexes with the formula CuX(L) (X=N3 1, NCO 2 and NCS 3) and [Cu(NO3)(HL)(H2O)](NO3) 4, where HL=C7H8N4S, (pyridine-2-carbaldehyde thiosemicarbazone), have been characterised. Single-crystal X-ray diffraction studies on compounds 3 and 4 have been carried out. The structure of compound 4 consists of monomeric distorted square pyramidal copper(II) species. The copper(II) ions are coordinated to the NNS atoms from the tridentate thiosemicarbazone ligand and one oxygen atom of a nitrate group in the equatorial position. The oxygen atom of the water molecule occupies the apical position. The structure of compound 3 consists of non-centrosymmetric {Cu2(μ-SR)2} entities in which the copper(II) ions exhibit five-coordinate square–pyramidal geometry. The thiosemicarbazone ligand and one nitrogen atom from the thiocyanate ion are in a basal position. The sulfur atom of the tridentate ligand acts as a bridge occupying the apical position. Structural and spectroscopic results suggest the presence of relevant σ ligand-to-metal charge transfer and metal-to-ligand π-backdonation character in these compounds. The ESR spectra of compounds 3 and 4 show rhombic symmetry. For complexes 1 and 2 the ESR spectra exhibit axial signals. Magnetic measurements on compounds 1, 2 and 3 show antiferromagnetic couplings. The susceptibility data were fitted by the Bleaney–Bowers’ equation for copper(II) dimers. The obtained J/k values are −4.22, −6.10 and −7.33 K for compounds 1, 2 and 3, respectively.  相似文献   

5.
利用2-乙酰基吡啶(acpy) 和2-邻甲基苯胺在甲醇中回流反应得到新型希夫碱配体2-{1-[(2-甲基苯基) 亚氨基]-乙基}吡啶)(mpep) , 通过溶剂热法将acpy和mpep与氯化镉反应得到2种新型氯桥连一维之字链结构Cd(Ⅱ) 配位聚合物{[Cd(mpep) ]Cl2}n(配合物1)和{[Cd(acpy) ]Cl2}n(配合物2). 利用单晶X射线衍射、 核磁共振氢谱、 元素分析和红外光谱对配合物1和配合物2进行结构表征. 结果表明, 配合物1和配合物2均为一维之字链状结构. 在配合物1中, Cd与mpep配体中2个氮原子和4个氯原子配位, 呈六配位顺式八面体构型, 并通过2个Cl原子桥连形成一维之字链状结构. 在配合物2中, 中心金属Cd(Ⅱ) 与acpy中的氮原子、 氧原子和4个氯原子配位, 也呈六配位顺式八面体构型, 进一步通过Cl原子桥连相邻金属形成一维之字链状结构. 在3种不同极性的溶剂(CH3OH, CH3CN和 CH2Cl2)中, 两种配位聚合物均呈现蓝色荧光(390~433 nm) , 说明2种配位聚合物具有弱溶剂效应; 在固态室温下两种配位聚合物也呈现蓝色荧光, 最大发射波长分别为440和473 nm. 固态最大发射波长比溶液中红移的原因是分子中存在氢键, 降低了基态与激发态之间的能级差. 在室温下, 配合物1和配合物2在3种溶液和固态中均显示出较长的荧光寿命(19.08~60.20 μs) .  相似文献   

6.
Binuclear complexes [{Cu(NN)(PhNHpy)}2(μ-OH)2](PF6)2, where NN=2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen), have been synthesized and characterized by chemical analysis, conductance measurements and IR and electronic spectroscopy. The X-ray crystal structure of [{Cu(bipy)(PhNHpy)}2(μ-OH)2](PF6)2 shows a distorted square-planar pyramidal coordination for Cu(II), defined by two nitrogen atoms of bipy, two bridging oxygen atoms and the pyridinic nitrogen atom of the ligand. Magnetic susceptibility measurements (in the 4.8–290 K range) reveal coupling which is antiferromagnetic for the bipy complex (2J=−24.2 cm−1) and slightly ferromagnetic for the phen complex (2J=3.3 cm−1). The EPR spectra show the expected triplet signals.  相似文献   

7.
Six new copper(II) complexes of 2-benzoylpyridine N(4)-cyclohexyl thiosemicarbazone (HL) have been synthesized and characterized by different physicochemical techniques like molar conductivity measurements, magnetic studies and electronic, infrared and EPR spectral studies. Five of the complexes have been found to possess the stoichiometry [CuLX], where X = Cl (1), Br (2), NO3 (3), NCS (4), N3 (5). The complex prepared from copper sulfate has the composition [Cu2L2SO4] · (H2O)2 (6). In all the complexes the deprotonated ligand, L and the anion were found to be coordinated to the Cu(II) ion. The terdentate nature of the ligand is evident from the IR spectra. The metal ligand bonding parameters evaluated from the EPR spectra indicate strong in-plane σ and in-plane π bonding. The magnetic and spectroscopic data indicate a square planar geometry for complexes 1, 3, 4 and 5, while the complexes 2 and 6 are assigned a square pyramidal geometry. Crystal structure of the complex [CuLCl] reveals two molecules per asymmetric unit of a monoclinic lattice, with space group symmetry P21/n. The complexes [ CuLBr 2] (2) and [CuLNCS] (4) crystallized into triclinic lattices with space group . Compound 2 exists as a thiolate bridged copper(II) dimer. The antimicrobial activity of the ligand and the copper complexes were tested against five types of bacteria isolated from clinical samples. The complexes were found to be active against Bacillus sp., Vibrio cholera O1, Staphylococcus aurus and Salmonella paratyphi.  相似文献   

8.
The bimetallic [Pt(NH3)4]2[W(CN)8][NO3]·2H2O is characterised by single-crystal X-ray diffraction [S.G.P21/m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)–N 2.042(2) and Pt(2)–N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)–C 2.164(13), C–N 1.140(12), W(1)–N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)–W(1), W(1)* separations of 4.77(2), 4.55(2)* and Pt(1)–W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO3 between parallel [Pt(1)(NH3)4]2+ planes and the second consists of [W(CN)8]3− interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH3)4]2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH3 ligands, water molecules and oxygen atoms of NO3 counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.  相似文献   

9.
The molecular structure of 3-methylthiophene has been determined by gas electron diffraction (GED) combined with microwave (MW) spectroscopic data. Ab initio calculations at the HF/3–21G* level were carried out and used as structural constraints in the data analysis. The torsional vibration of the methyl group was treated as a large-amplitude motion. The structural parameters were determined to be: rg(S---C2) = 1.719(2) Å, rg(C2=C3) = 1.370(3) Å, rg(C3---C6) = 1.497(6) Å, rg(C2---H) = 1.101(5) Å, CSC = 91.6(2)°, SC2C3 = 113.3(5)°, SC5C4 = 111.3(3)°, C2C3C6 = 123.2(11)° and C3C6H = 112(2)°. The values of r(S---C2) - r(S=C5) and r(C2=C3)-r(C4 =C5) were fixed at the 3–21G* value of 0.002 Å. Parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   

10.
Molecular structures of (triphenylphosphine) [1,1′-bis-(methylthio)ferrocene-S,S′,Fe]Pt(BF4)2 (1), (1,5,9-trithia[9]ferrocenophane-S,S′,S″,Fe)Pd(BF4)2 (2), and (acetonitrile)(1,4,7-trithia[7]ferrocenophane-S,S′,S″,Fe)Pd(BF4)2 (3) were determined by X-ray analyses. The Pt in 1 and the Pd atom in 2 have a somewhat distorted square-planar geometry including the Fe atom of the ferrocene moiety, while the Pd atom in 3 is coordinated by one equivalent of acetonitrile and takes a distorted tetragonal-pyramidal geometry. The distances of the Fe---M bond (M = Pd, Pt) in 1–3 are 2.851(2), 2.827(2), and 3.0962(8) Å, respectively. Cyclic voltammetry of 1–3 gave no reversible wave, but afforded some information supporting the presence of a dative bond.  相似文献   

11.
A new chiral ferrocenylphosphine ligand, 2,2′-bis[1-N,N-dimethylamino)ethyl]-1,1′-bis(diphenylphosphino)ferrocene (2), which has C2 symmetry and a functional group on the side chain, was prepared by ortho-lithiation and phosphination of 1,1′-bis[1-N,N-dimethylamino)ethyl]ferrocene followed by optical resolution; recrystallization of the diammonium salt with tartaric acid. An X-ray diffraction study of PdCl2[(+)-2] showed that the complex has square-planar geometry with two cis chlorine and two phosphorus atoms and ligand (+)-2 has an (S) configuration on the 1-dimethylaminoethyl side chain and (R) ferrocene planar chirality.  相似文献   

12.
A novel dinuclear complex [Cu2(μ-L)4(HL)2] (1) was isolated from starting 2-pyridone (HL) via a resonance and a tautomeric transformation. Each copper centre is in a square-pyramidal coordination sphere, defined by two oxygen atoms (Cu–O4 1.978(5), Cu–O11 1.964(4) Å) and two nitrogen atoms (Cu–N2 2.003(5), Cu–N3 2.007(5) Å) of four bridging deprotonated pyridin-2-olates and an oxygen atom on the top from a neutral 2-pyridone (Cu–O2 2.227(5) Å), analogous to tetracarboxylate paddle-wheel complexes. Compound 1 was compared with mixed pyridin-2-olato/methanoato analogues [Cu2(μ-HCO2)2(μ-L)2(HL)2] · 2CH3CN (2) and [Cu2(μ-HCO2)2(μ-L)2(HL)2] (2a) (2a is an air stable form obtained from 2 outside mother-liquid). The EPR spectra of air stable 1 and 2a show three signals Hz1, H2 and Hz2, typical for the binuclear systems with spin S = 1, both revealing strong antiferromagnetism 2J = −334 (1) and −324 cm−1 (2a). Interestingly, only for 1 additional H1 signal at 100 mT is noticed (D(1) = 0.293 cm−1 <  = 0.320 cm−1 < D(2a) = 0.347 cm−1). On the other hand, several broad signals in the 100–450 mT region, only in the high temperature spectrum for 2a are observed. These results are in agreement with the magnetic susceptibility analysis.  相似文献   

13.
The chiral ligands, 4,4′-bis{(1S,2R,4S)-(−)-bornyloxy}-2,2′-bipyridine, (1S,2R,4S)-1, and 4,4′-bis{(1R,2S,4R)-(+)-bornyloxy}-2,2′-bipyridine, (1R,2S,4R)-1, have been prepared and characterized by spectroscopic techniques and, for (1S,2R,4S)-1, by single crystal X-ray diffraction. Despite the use of enantiomerically pure ligands, the formation of the complexes [Fe((1S,2R,4S)-1)3]2+, [Ru((1S,2R,4S)-1)3]2+, [Ru((1S,2R,4S)-1)(bpy)2]2+ and [Ru((1R,2S,4R)-1)(bpy)2]2+ proceeds without preference for either the Δ or Λ-diastereoisomers.  相似文献   

14.
The synthesis, spectroscopic, and crystal structures of three heteroleptic thioether/halide platinum(II) (Pt(II)) complexes of the general formula [Pt(9S3)X2] (9S3=1,4,7-trithiacyclononane, X=Cl, Br, I) are presented. All three 9S3/dihalo complexes form very similar structures in which the Pt(II) center is surrounded by a cis arrangement of two halides and two sulfur atoms from the 9S3 ligand. The third sulfur from the 9S3 forms a long distance interaction with the Pt center resulting in an elongated square pyramidal structure with a S2X2+S1 coordination geometry. The distances between the Pt(II) center and axial sulfur shorten with larger halide ions (Cl=3.260(3) Å>Br=3.243(2) Å>I=3.207(2) Å). These distances are consistent with the halides functioning as π donor ligands, and their Pt---S axial distances fall intermediate between Pt(II) thioether complexes involving π acceptor and σ donor ligands. The 195Pt NMR chemical shift values follow a similar trend with an increased shielding of the platinum ion with larger halide ions. The 9S3 ligand is fluxional in all of these complexes, producing a single carbon resonance. Additionally, a related series of homoleptic crown thioether complexes have been studied using 195Pt NMR, and there is a strong correlation between the chemical shift and complex structure. Homoleptic crown thioethers show the anticipated upfield chemical shifts with increasing number of coordinated sulfurs. Complexes containing four coordinated sulfur donors have chemical shifts that fall in the range of −4000 to −4800 ppm while a value near −5900 ppm is indicative of five coordinated sulfurs. However, for S4 crown thioether complexes, differences in the stereochemical orientation of lone pair electrons on the sulfur donors can greatly influence the observed 195Pt NMR chemical shifts, often by several hundred ppm.  相似文献   

15.
The optically active indenyl complexes ((η5-C9H7)Ru(L---L)Cl (where L---L is either (S,S)-1,2-dimethyl-1,2-ethanediylbis(diphenylphosphine) (chiraphos) or (R,R)-1,2-cyclopentanediylbis(diphenylphosphine) (cypenphos)) have been synthesized and spectroscopically characterized and compared with the corresponding cyclopentadienyl complexes. Reaction of the new complexes with 2-e-donors give cationic adducts in which the pentahaptocoordination of the indenyl ligand is maintained. The crystal structures of (S,S)-(η5-C9H7)Ru{Ph2PCH(CH3)CH(CH3)PPh2}Cl (1) and (S,S)-η5-C5H5Ru{Ph2PCH(CH3)CH(CH3)PPh2}Cl (3) have been determined.  相似文献   

16.
Chiral C2-symmetric 2,3-disubstituted aziridines and 2,6-disubstituted piperidines having a β-amino alcohol moiety have been successfully synthesized and their catalytic chiral induction properties have been examined in the asymmetric addition reactions of diethylzinc with arylaldehydes in hexane. When N-(2,2-diphenyl-2-hydroxyethyl)-(S,S)-2,3-bis(methoxymethyl)aziridine 11 was used as a catalytic chiral ligand, sec-alcohols having (S)-configuration formed in high yields of 86–92% but low enantiomeric excesses (ee's) of 11–13%. However, when N-(2,2-diphenyl-2-hydroxyethyl)-(R,R)-2,6-disubstituted piperidine derivatives 16 and 20 were used as the chiral ligands under the same reaction conditions, the ee's of the corresponding sec-alcohols were 20–30 and 5–6%, respectively, along with the inversion of absolute configuration. A plausible mechanism for this inversion is proposed.  相似文献   

17.
Molecules of the type A(OX)4, A(NX2)4 and A(CY2X)4 are not regularly tetrahedral about the central atom A. Two of the angles about this central atom are smaller than tetrahedral and four are larger, or four are smaller and two larger. By considering that the ligand atom (O, N or C) that is bonded to the central atom A has three intramolecular ligand radii and minimising the number of ligand–ligand contact distances, as described in the theory of ligand close packing, we are able to account for the S4 and D2d geometries observed for C(OCH3)4, C(OPh)4 and CEE4 and related molecules. The ligand close packing model also rationalises the C2 geometries of SO2(OR)2 molecules and the differences in O–C–R angles and C–R bond lengths in R3COX molecules. The lengths of these interligand radii can be determined either by calculating the molecular geometry or by deriving them from experimental geometries. The radii depend on the charge of the ligand, the sizes of the Y and Z groups and the angle A–X–Z. The relative sizes of these radii determine the preference for D2d or S4 geometries and the degree of distortion of the bond angles from the ideal tetrahedral angle.  相似文献   

18.
Nickel(II) chromate complex with imidazole (HIm) was isolated from the [Ni2+–HIm–CrO42−] system in various experimental conditions, i.e. reagent molar ratios and nickel(II) salts. The catena(μ-CrO4-O,O′)[Ni(HIm)3H2O] (1) crystallizes in monoclinic crystal system—space group P21/n with cell parameters: a=11.784(2), b=8.899(2), c=13.934(3) (Å), β=95.19(3) (°). The unit cell contains two independent helixes, left- and right-handed, stabilized by intrahelical and interhelical hydrogen bonds (HB) and π–π interactions. The cis coordination of the CrO42− anions and the HB systems appeared to be the main determinants of the helical architecture. To the best of our knowledge the cis-chromate coordination was observed for the first time. The cis coordination causes the distortion of the nickel octahedron, which was analysed by 4 K single crystal electronic spectra with D4h symmetry approximation (gaussian resolution and crystal field parameters). This symmetry was also confirmed with the polarised electronic spectra. The magnetic properties of the complex suggest the occurrence of weak intrachain antiferromagnetic interactions between the magnetic NiII center. The computational DFT studies of complex 1 assuming three possible isomers mer[(HIm)3]–cis[(CrO42−)2], mertrans and faccis suggested that the main contribution to the stability of 1 might have interhelical and intrahelical hydrogen bonds.  相似文献   

19.
A novel three-dimensional (3D) mixed-valence iron coordination polymer [Fe2IIIFeIIO2(IN)2(ox)] (IN=isonicotinate, OX=oxalate) (1) has been hydrothermally synthesized by using two different anionic ligands and characterized by elemental analysis, IR spectrum, electron spin resonance (ESR), X-ray photoelectron spectrum (XPS), thermogravimetric analysis (TGA) and single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic, space group P2(1)/c with a=5.8774(7) Å, b=18.528(2) Å, c=7.7117(9) Å, V=817.69(17) Å3, Z=2, and R1=0.0321 (wR2=0.0777). The Fe(II) and Fe(III) centers in 1 both exhibit a distorted octahedral coordination geometry and are bridged by the IN and oxalate groups into a covalently bonded 3D metal–organic network. TGA showed that the 3D network possesses a good stability up to 291 °C.  相似文献   

20.
The synthesis and coordination of 2-diphenylphosphinopicolinamide (dpppa 1) is reported. Coordination complexes with Pd, Pt, Ru, Rh, Ir and Au are described. The ligand behaves as a monodentate P donor in complexes such as [PtCl2(dpppa-P2)], [PdCl(allyl)(dpppa-P)], [RuCl2(p-Cymene)(dpppa-P)], cis-[PtCl2(dpppa-P)(PR3)] and [AuCl(dpppa-P)]. Bidentate P, O coordination was accomplished by reaction of BuLi with [RuCl2(p-Cymene)(dpppa-P)], to give [RuCl(p-Cymene)(dpppa-P,O). P,N donor behaviour was achieved by reaction of a monodentate complex with a halide abstractor [AgBF4] generating [RuCl(p-Cymene)(dpppa-P,N)][ClO4] and[RhCl(η5-C5Me5)(dpppa-P,N)][BF4]. The X-ray structures of dpppa, dpppaO, dpppaS, four monodentate complexes and [RuCl(p-Cymene)(dpppa-P,O) are reported. All of the structures contain intramolecular N–HN hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号