首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Current solution NMR experiments for characterizing conformational exchange processes in large proteins are limited to exchange rates ca. 500-3000 s-1. A TROSY-based constant relaxation time (R1rho - R1) experiment is designed to extend this capability to measure motion with rates up to 105 s-1 in large macromolecules. The experiment combines off-resonance spin-lock rf fields, which provide access to the faster time-scale dynamics, with TROSY coherence selection, which extends the molecular-weight range available for study. When implemented on the 53-kDa dimeric enzyme triosephosphate isomerase, the experiment yielded substantial gains in signal-to-noise (up to 60%) over current experiments at modest static magnetic fields (14.1 T). The TROSY (R1rho - R1) experiment should therefore be of general utility for investigation of fast conformational exchange events in large proteins.  相似文献   

2.
Pimonidazole is one of a series of nitroimidazole compounds that is widely used as a marker for qualitative and quantitative assessment of tumour hypoxia. We have observed a novel dynamic conformational exchange process in this molecule in aqueous solution. By a combination of 1H, 13C, two-dimensional 1H-1H EXchange SpectroscopY (EXSY) and spectral simulation, we unambiguously attribute the conformational exchange process to flipping of the six-membered heterocyclic ring.  相似文献   

3.
Conformational dynamics is important for enzyme function. Which motions of enzymes determine catalytic efficiency and whether the same motions are important for all enzymes, however, are not well understood. Here we address conformational dynamics in glutaredoxin during catalytic turnover with a combination of NMR magnetization transfer, R(2) relaxation dispersion, and ligand titration experiments. Glutaredoxins catalyze a glutathione exchange reaction, forming a stable glutathinoylated enzyme intermediate. The equilibrium between the reduced state and the glutathionylated state was biochemically tuned to exchange on the millisecond time scale. The conformational changes of the protein backbone during catalysis were followed by (15)N nuclear spin relaxation dispersion experiments. A conformational transition that is well described by a two-state process with an exchange rate corresponding to the glutathione exchange rate was observed for 23 residues. Binding of reduced glutathione resulted in competitive inhibition of the reduced enzyme having kinetics similar to that of the reaction. This observation couples the motions observed during catalysis directly to substrate binding. Backbone motions on the time scale of catalytic turnover were not observed for the enzyme in the resting states, implying that alternative conformers do not accumulate to significant concentrations. These results infer that the turnover rate in glutaredoxin is governed by formation of a productive enzyme-substrate encounter complex, and that catalysis proceeds by an induced fit mechanism rather than by conformer selection driven by intrinsic conformational dynamics.  相似文献   

4.
Intramolecular H-bonding interactions were investigated in solution for the threo and erythro diastereomeric forms of a guaiacyl beta-O-4 lignin model compound by using the NMR data obtained from hydroxyl protons. Temperature coefficients of the chemical shifts (ddelta/dT) and coupling constants (3J(HCOH)) were measured in aprotic and protic solutions: DMSO-d6, acetone-d6 and acetone-d6-water. The NMR parameters do not support the existence of strong and persistent intramolecular H-bonds that could participate in the stabilization of the guaiacyl beta-O-4 structure in solution, but instead indicate that intermolecular H-bonds to solvent predominate. 1D NOE experiments nevertheless revealed the presence of a direct chemical exchange between the hydroxyl protons, suggesting the possible existence of weak and transient intramolecular H-bonding interactions. The conformational flexibility of the threo structure was also investigated in acetone solution from the measurement of long-range 1H, 1H and 1H, 13C coupling constants and from NOESY experiments. The NMR data are not consistent with any single conformation, indicating that different conformers co-exist in solution. The experimental results support the conformational flexibility predicted by molecular dynamics simulations performed in a previous study. Finally, both experimental and theoretical approaches indicate that weak intramolecular H-bonds can exist transiently in solution, breaking and reforming as the beta-O-4 molecule undergoes conformational interconversion, but cannot be invoked as possible means of conferring rigidity to the beta-O-4 structure.  相似文献   

5.
Two pyridoxine derivatives containing a dinitrophenyl moiety were investigated by 1H NMR spectroscopy. Conformational dynamics in solution were studied for each compound using dynamic NMR experiments. It was shown that both compounds studied are involved into two conformational exchange processes. The first process is a transformation of the seven‐membered cycle conformation between the enantiomeric P‐twist and M‐twist forms, and the second is a rotation of the dinitrophenyl fragment of the molecules around the C–O bond. Energy barriers of both conformational transitions were determined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Sugar function, structure and dynamics are intricately correlated. Ring flexibility is intrinsically related to biological activity; actually plasticity in L ‐iduronic rings modulates their interactions with biological receptors. However, the access to the experimental values of the energy barriers and free‐energy difference for conformer interconversion in water solution has been elusive. Here, a new generation of fluorine‐containing glycomimetics is presented. We have applied a combination of organic synthesis, NMR spectroscopy and computational methods to investigate the conformational behaviour of idose‐ and glucose‐like rings. We have used low‐temperature NMR spectroscopic experiments to slow down the conformational exchange of the idose‐like rings. Under these conditions, the exchange rate becomes slow in the 19F NMR spectroscopic chemical shift timescale and allows shedding light on the thermodynamic and kinetic features of the equilibrium. Despite the minimal structural differences between these compounds, a remarkable difference in their dynamic behaviour indeed occurs. The importance of introducing fluorine atoms in these sugars mimics is also highlighted. Only the use of 19F NMR spectroscopic experiments has permitted the unveiling of key features of the conformational equilibrium that would have otherwise remained unobserved.  相似文献   

7.
8.
Microsolvation and combined microsolvation-continuum approaches are employed to investigate the structures and energies of canonical and zwitterionic histidine conformers. The effect of hydration on the relative conformational stability is examined. The strategy of exploring singly and doubly hydrated structures and the possible microsolvation patterns are described. We find that bonding water molecule may significantly change the relative conformational stabilities. In gas phase, the singly and doubly hydrated canonical forms are more stable than their zwitterionic counterparts. In solution, the continuum solvent model shows that bare zwitterionic form is more stable than bare canonical form by 1.1 kcal/mol. This energy separation is increased to 2.2 and 3.4 kcal/mol with inclusion of one and two explicit water molecules, respectively. We have also observed that the doubly hydrated structures obtained by combining two water molecules simultaneously to the solute molecule are preferred over the stepwise hydration. Hydrogen bond energies for the most stable hydrated histidine tautomers are determined by the atoms in molecules theory. The infrared (IR) spectra for the most stable singly and doubly hydrated structures of both histidine tautomers in gas phase are characterized. The stretching frequencies for NH of imidazole ring and OH of COOH are red shifted due to the hydrations. The IR spectra for the most stable zwitterionic tautomers in solution are also presented and discussed in connection with the comparison to the experiments. The pKa values obtained for the ring protonated zwitterions with two explicit water molecules appear to be in good agreement with the experiments.  相似文献   

9.
Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and characterize "invisible" excited protein states in slow exchange with a visible ground-state conformation (excited-state lifetimes ranging from ~5 to 50 ms) is presented. This method, which is an adaptation of the chemical exchange saturation transfer (CEST) magnetic resonance imaging experiment, involves irradiating various regions of the spectrum with a weak B(1) field while monitoring the effect on the visible major-state peaks. The variation in major-state peak intensities as a function of frequency offset and B(1) field strength is quantified to obtain the minor-state population, its lifetime, and excited-state chemical shifts and line widths. The methodology was validated with (15)N CEST experiments recorded on an SH3 domain-ligand exchanging system and subsequently used to study the folding transition of the A39G FF domain, where the invisible unfolded state has a lifetime of ~20 ms. Far more accurate exchange parameters and chemical shifts were obtained than via analysis of Carr-Purcell-Meiboom-Gill relaxation dispersion data.  相似文献   

10.
(15)N relaxation dispersion experiments were applied to the isolated N-terminal SH3 domain of the Drosophila protein drk (drkN SH3) to study microsecond to second time scale exchange processes. The drkN SH3 domain exists in equilibrium between folded (F(exch)) and unfolded (U(exch)) states under nondenaturing conditions in a ratio of 2:1 at 20 degrees C, with an average exchange rate constant, k(ex), of 2.2 s(-1) (slow exchange on the NMR chemical shift time scale). Consequently a discrete set of resonances is observed for each state in NMR spectra. Within the U(exch) ensemble there is a contiguous stretch of residues undergoing conformational exchange on a micros/ms time scale, likely due to local, non-native hydrophobic collapse. For these residues both the F(exch) <--> U(exch) conformational exchange process and the micros/ms exchange event within the U(exch) state contribute to the (15)N line width and can be analyzed using CPMG-based (15)N relaxation dispersion measurements. The contribution of both processes to the apparent relaxation rate can be deconvoluted numerically by combining the experimental (15)N relaxation dispersion data with results from an (15)N longitudinal relaxation experiment that accurately quantifies exchange rates in slow exchanging systems (Farrow, N. A.; Zhang, O.; Forman-Kay, J. D.; Kay, L. E. J. Biomol. NMR 1994, 4, 727-734). A simple, generally applicable analytical expression for the dependence of the effective transverse relaxation rate constant on the pulse spacing in CPMG experiments has been derived for a two-state exchange process in the slow exchange limit, which can be used to fit the experimental data on the global folding/unfolding transition. The results illustrate that relaxation dispersion experiments provide an extremely sensitive tool to probe conformational exchange processes in unfolded states and to obtain information on the free energy landscape of such systems.  相似文献   

11.
We investigated the excitation energy transfer process of meso-meso linked zinc(II) porphyrin arrays using the on-the-fly filtered propagator path integral method. Details of the dynamics such as coherence length of a porphyrin array are estimated by analysis of the characteristics of forward-backward pair trajectories. Upon examination of the convergence of the reduced density matrix with respect to the subset of Hilbert space trajectories, we determine the number of porphyrin units that form collective coherent states, that is, the coherence length. Simulation results show that the coherence length of zinc(II) porphyrin arrays is up to 4 units, which agrees excellently with experimental observations. On the other hand, the energy bias provided by the energy-accepting 5,15-bisphenylethynylated zinc(II) porphyrin reduces the degree of coherence which becomes negligible for an array with more than for porphyrin units. Considering conformational inhomogeneity, we found that the experimentally determined coherence length is the result of electronic and environmental influence rather than the structure disorder. Temperature dependence is also discussed.  相似文献   

12.
In an effort to determine the details of the solid-state reaction mechanism and diastereoselectivity in the Norrish type II and Yang cyclization of crystalline α-adamantyl-p-methoxyacetophenone, we determined its solid-state quantum yields and transient kinetics using nanocrystalline suspensions. The transient spectroscopy measurements were complemented with solid-state NMR spectroscopy spin-lattice relaxation experiments using isotopically labeled samples and with the analysis of variable-temperature anisotropic displacement parameters from single-crystal X-ray diffraction to determine the rate of interconversion of biradical conformers by rotation of the globular adamantyl group. Our experimental findings include a solid-state quantum yield for reaction that is 3 times greater than that in solution, a Norrish type II hydrogen-transfer reaction that is about 8 times faster in crystals than in solution, and a biradical decay that occurs on the same time scale as conformational exchange, which helps to explain the diastereoselectivity observed in the solid state.  相似文献   

13.
We report here on the determination of the conformation of Peloruside A bound to biochemically stabilized microtubules, by using TR-NOESY NMR experiments. As a previous step, the conformation of the free molecule in water solution has also been deduced. Despite the large size of the ring, Peloruside A mainly adopts two conformations in water solution. A conformational selection process takes place, and the microtubules-bound conformer is one of those present in the water solution, different than that existing in chloroform medium. A model of the binding mode to tubulin has also been proposed, by docking the bioactive conformation of peloruside, which involves the alpha-tubulin monomer, in contrast with taxol, which binds to the beta-monomer.  相似文献   

14.
Measurements of protein unfolding in the absence of solvent, when combined with unfolding studies in solution, offer a unique opportunity to measure the effects of solvent on protein structure and dynamics. The experiments presented here rely on the fluorescence of an attached dye to probe the local conformational dynamics through interactions with a Trp residue and fields originating on charge sites. We present fluorescence measurements of thermal fluctuations accompanying conformational change of a miniprotein, Trp-cage, in solution and in gas phase. Molecular dynamics (MD) simulations are performed as a function of temperature, charge state, and charge location to elucidate the dye-protein conformational dynamics leading to the changes in measured fluorescence. The results indicate that the stability of the unsolvated protein is dominated by hydrogen bonds. Substituting asparagine for aspartic acid at position 9 results in a dramatic alteration of the solution unfolding curve, indicating that the salt bridge involving Lys8, Asp9, and Arg16 (+ - +) is essential for Trp-cage stability in solution. In contrast, this substitution results in minor changes in the unfolding curve of the unsolvated protein, showing that hydrogen bonds are the major contributor to the stability of Trp-cage in gas phase. Consistent with this hypothesis, the decrease in the number of hydrogen bonds with increasing temperature indicated by MD simulations agrees reasonably well with the experimentally derived enthalpies of conformational change. The simulation results display relatively compact conformations compared with NMR structures that are generally consistent with experimental results. The measured unfolding curves of unsolvated Trp-cage ions are invariant with the acetonitrile content of the solution from which they are formed, possibly as a result of conformational relaxation during or after desolvation. This work demonstrates the power of combined solution and gas-phase studies and of single-point mutations to identify specific noncovalent interactions which contribute to protein-fold stability. The combination of experiment and simulation is particularly useful because these approaches yield complementary information which can be used to deduce the details of structural changes of proteins in the gas phase.  相似文献   

15.
In this paper, we present a series of heteronuclear NMR experiments for the direct observation and characterization of lysine NH3 groups in proteins. In the context of the HoxD9 homeodomain bound specifically to DNA we were able to directly observe three cross-peaks, arising from lysine NH3 groups, with 15N chemical shifts around approximately 33 ppm at pH 5.8 and 35 degrees C. Measurement of water-exchange rates and various types of 15N transverse relaxation rates for these NH3 groups, reveals that rapid water exchange dominates the 15N relaxation for antiphase coherence with respect to 1H through scalar relaxation of the second kind. As a consequence of this phenomenon, 15N line shapes of NH3 signals in a conventional 1H-15N heteronuclear single quantum coherence (HSQC) correlation experiment are much broader than those of backbone amide groups. A 2D 1H-15N correlation experiment that exclusively observes in-phase 15N transverse coherence (termed HISQC for heteronuclear in-phase single quantum coherence spectroscopy) is independent of scalar relaxation in the t(1) (15N) time domain and as a result exhibits strikingly sharper 15N line shapes and higher intensities for NH3 cross-peaks than either HSQC or heteronuclear multiple quantum coherence (HMQC) correlation experiments. Coherence transfer through the relatively small J-coupling between 15Nzeta and 13Cepsilon (4.7-5.0 Hz) can be achieved with high efficiency by maintaining in-phase 15N coherence owing to its slow relaxation. With the use of a suite of triple resonance experiments based on the same design principles as the HISQC, all the NH3 cross-peaks observed in the HISQC spectrum could be assigned to lysines that directly interact with DNA phosphate groups. Selective observation of functional NH3 groups is feasible because of hydrogen bonding or salt bridges that protect them from rapid water exchange. Finally, we consider the potential use of lysine NH3 groups as an alternative probe for larger systems as illustrated by data obtained on the 128-kDa enzyme I dimer.  相似文献   

16.
We present a Bayesian inference approach to estimating conformational state populations from a combination of molecular modeling and sparse experimental data. Unlike alternative approaches, our method is designed for use with small molecules and emphasizes high‐resolution structural models, using inferential structure determination with reference potentials, and Markov Chain Monte Carlo to sample the posterior distribution of conformational states. As an application of the method, we determine solution‐state conformational populations of the 14‐membered macrocycle cineromycin B, using a combination of previously published sparse Nuclear Magnetic Resonance (NMR) observables and replica‐exchange molecular dynamic/Quantum Mechanical (QM)‐refined conformational ensembles. Our results agree better with experimental data compared to previous modeling efforts. Bayes factors are calculated to quantify the consistency of computational modeling with experiment, and the relative importance of reference potentials and other model parameters. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into "alpha helix" and "beta sheet" structures. The 5-residue polyalanine displays a substantial increase in the "beta strand" fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling.  相似文献   

18.
Rapid solution exchange on a solid-supported membrane (SSM) is investigated using fluidic structures and a solid-supported membrane of 1 mm diameter in wall jet geometry. The flow is analyzed with a new technique based on specific ion interactions with the surface combined with an electrical measurement. The critical parameters affecting the time course of the solution exchange and the transfer function describing the time resolution of the SSM system are determined. The experimental data indicate that solution transport represents an intermediate situation between the plug flow and the Hagen-Poiseuille laminar flow regime. However, to a good approximation the rise of the surface concentration can be described by Hagen-Poiseuille flow with ideal mixing at the surface of the SSM. Using an improved cuvette design, solution exchange as fast as 2 ms was achieved at the surface of a solid-supported membrane. As an application of the technique, the rate constant of a fast electrogenic reaction in the melibiose permease MelB, a bacterial ( Escherichia coli) sugar transporter, is determined. For comparison, the kinetics of a conformational transition of the same transporter was measured using stopped-flow tryptophan fluorescence spectroscopy. The relaxation time constant obtained for the charge displacement agrees with that determined in the stopped-flow experiments. This demonstrates that upon sugar binding MelB undergoes an electrogenic conformational transition with a rate constant of k approximately 250 s (-1).  相似文献   

19.
The conformational behavior of a giant DNA mediated by condensing agents in the bulk solution has been investigated through experimental and theoretical approaches. Experimentally, a pronounced conformational hysteresis is observed for folding and unfolding processes, by increasing and decreasing the concentration of condensing agent (polyethylene glycol) (PEG), respectively. To elucidate the observed hysteresis, a semiflexible chain model is studied by using Monte Carlo simulations for the coil-globule transition. In the simulations, the hysteresis loop emerges for stiff enough chains, indicating distinct pathways for folding and unfolding processes. Also, our results show that globular state is thermodynamically more stable than coiled state in the hysteresis loop. Our findings suggest that increasing chain stiffness may reduce the chain conformations relevant to the folding pathway, which impedes the folding process.  相似文献   

20.
Single-walled carbon nanohorns (SWNHs) are interesting carbon nanostructures that have applications to science and technology. Using M13 phage display technology, polypeptides directed again SWNHs surfaces have been created for a number of nanotechnology and pharmaceutical purposes, yet the molecular mechanism of polypeptide sequence interaction and binding to SWNHs surfaces is not known. Recently, we identified a linear 12-AA M13 phage pIII sequence, NH-12-5-2 (DYFSSPYYEQLF), that binds with high affinity to SWNHs surfaces. To probe the structure of this pIII tail polypeptide further, we investigated the conformation of a model peptide representing the 12 AA NH-12-5-2 sequence. At neutral pH, the NH-12-5-2 model polypeptide is conformationally labile and exhibits two-state conformational exchange involving the D1-S5 N-terminal segment. Simultaneous with this conformational exchange process is the observation that the P6 residue exhibits imido ring conformational variation. In the presence of the structure-stabilizing solvent, TFE, or at pH 2.5, both the exchange process and Pro ring motion phenomena disappear, indicating that the structure of this peptide sequence can be stabilized by extrinsic factors. Interestingly, we observe NMR parameters (ROEs, (3)J coupling constants) for NH-12-5-2 in 90% v/v TFE that are consistent with the presence of a partial helical structure, similar to what was observed at low pH in our earlier CD experiments. We conclude that the NH-12-5-2 model polypeptide sequence possesses an inherent conformational instability that involves the D1-S5 sequence segment and the P6 residue but that this instability can be offset by extrinsic factors (e.g., charge neutralization, imido ring interconversion, and hydrophobic-hydrophobic interactions). These nonbonding interactions may play a role in the recognition and binding of this phage sequence region to SWNHs surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号