首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于密度泛函理论, 本文研究了氢钝化锯齿形边缘三角形石墨烯纳米片的电子结构和磁学性质, 这种石墨烯纳米结构的基态表现出强烈的磁性边缘态和量子尺寸效应。 我们应用多种交换关联泛函, 对体系的自旋密度和电子结构进行了第一性原理计算和理论分析, 结果表明三角形石墨烯纳米片的总磁矩和自旋随尺寸线性变化,平均磁矩随着尺寸变大而增加, 并逐渐趋于一个定值。 与此同时, 体系的能隙随着尺寸增加而减小, 其中自旋不变能隙的调控对光学响应和光子激发有着重要意义。 计算得到的单电子能谱表明, 费米能级的简并度与体系尺寸成正比。 应用多种交换关联泛函的计算结果表明, 三角形石墨烯纳米片具有可调控的自旋和能隙, 为其在纳米级光电器件和磁性半导体的应用方面提供了理论依据.  相似文献   

2.
Elaborate density functional theory (DFT) calculations that include the effect of van der Waals (vdW) interactions have been carried out for graphene epitaxially grown on Ru(0001). The calculations predict a reduction of structural corrugation in the observed moiré pattern of about 25% (~0.4 ?) with respect to DFT calculations without vdW corrections. The simulated STM topographies are close to the experimental ones in a wide range of bias voltage around the Fermi level.  相似文献   

3.
Scanning tunneling microscopy shows that a layer of graphene can be grown on the hex-reconstructed Pt(100) surface and that the reconstruction is preserved after growth. A continuous sheet of graphene can be grown across domain boundaries and step edges without loss of periodicity or change in direction. Density functional theory calculations on a simple model system support the observation that the graphene can have different rotation angles relative to the hex-reconstructed Pt surface. The graphene sheet direction can be changed by incorporating pentagon-heptagon defects giving rise to accommodation of edge dislocations. The defect formation energy and the induced buckling of the graphene have been characterized by DFT calculations.  相似文献   

4.
We make use of first-principles calculations, based on the density functional theory(DFT), to investigate the alterations at the structural, energetic, electronic andmagnetic properties of graphene and zigzag graphene nanoribbons (ZGNRs) due to theinclusion of different types of line and punctual defects. For the graphene it is foundthat the inclusion of defects breaks the translational symmetry of the crystal withdrastic changes at its electronic structure, going from semimetallic to semiconductor andmetallic. Regarding the magnetic properties, no magnetization is observed for thedefective graphene. We also show that the inclusion of defects at ZGNRs is a good way tocreate and control pronounced peaks at the Fermi level. Furthermore, defective ZGNRsstructures show magnetic moment by supercell up to 2.0μB. For the non defectiveZGNRs is observed a switch of the magnetic coupling between opposite ribbon edges from theantiferromagnetic to the ferrimagnetic and ferromagnetic configurations.  相似文献   

5.
雷天民  刘佳佳  张玉明  郭辉  张志勇 《中国物理 B》2013,22(11):117502-117502
Mn-doped graphene is investigated using first-principles calculations based on the density functional theory(DFT).The magnetic moment is calculated for systems of various sizes,and the atomic populations and the density of states(DOS)are analyzed in detail.It is found that Mn doped graphene-based diluted magnetic semiconductors(DMS)have strong ferromagnetic properties,the impurity concentration influences the value of the magnetic moment,and the magnetic moment of the 8×8 supercell is greatest for a single impurity.The graphene containing two Mn atoms together is more stable in the 7×7 supercell.The analysis of the total DOS and partial density of states(PDOS)indicates that the magnetic properties of doped graphene originate from the p–d exchange,and the magnetism is given a simple quantum explanation using the Ruderman–Kittel–Kasuya–Yosida(RKKY)exchange theory.  相似文献   

6.
The adsorption of DNA bases on a magnetic probe composed of Fe atoms and graphene is studied by using firstprinciples calculations.The stability of geometry,the electronic structure and magnetic property are investigated.The results indicate that four DNA bases,i.e.,adenine,thymine,cytosine and guanine,can all be adsorbed on the probe solidly.However,the magnetic moments of the composite structure can be observed only when adenine adsorbs on the probe.In the cases of the adsorption of the other three bases,the magnetic moments of the composite structure are zero.Based on the significant change of magnetic moment of the composite structure,adenine can be distinguished conveniently from thymine,cytosine and guanine.This work may provide a new way to detect DNA bases.  相似文献   

7.
Graphene has proved to be extremely sensitive to its surrounding environment, such as the supporting substrate and guest adatoms. In this work, the structural stabilities, and electronic and magnetic properties of graphene with low-coverage adsorption of Si atoms and dimers are studied using a first-principles method. Our results show that graphene with Si adatoms is metallic and magnetic with a tiny structural change in the graphene, while graphene with Si addimers is semi-metallic and nonmagnetic with a visible deformation of the graphene. The spin-polarized density of states is calculated in order to identify the electronic origin of the magnetic and nonmagnetic states. The present results suggest that the electronic and magnetic behaviors of graphene can be tuned simply via Si adsorptions.  相似文献   

8.
This paper investigates the mechanical properties of graphene subjected to adsorption of molecular hydrogen through an ab initio approach. First, using density functional theory (DFT) with both generalized gradient and local density approximation functionals, the most stable configuration for physisorption of molecular hydrogen on the graphene is determined. All possible adsorption sites are considered, and it is revealed that the most stable state happens above the center of a hexagon with the equilibrium distance of 2.7 Å when the axis of the hydrogen molecule is parallel to the graphene surface. Thereafter, DFT calculations are performed to obtain the in-plane stiffness and Poisson’s ratio of graphene under the above-mentioned adsorption position. It is found that the effect of hydrogen physisorption on the mechanical properties of graphene is not very significant.  相似文献   

9.
Within the framework of the local density approximation (LDA) of the density functional theory (DFT) and the pseudopotential method, we have carried out ab initio calculations to investigate the structural and electronic properties of graphene upon the adsorption of benzene and naphthalene molecules. Our total-energy calculations suggest that, for both benzene and naphthalene adsorbed on graphene, the stack configuration is the most stable structure. The corresponding adsorption energies at different sites are estimated for both molecular adsorbates. The equilibrium parameters and the electronic band structure for the stable geometries have been calculated and compared with the available findings.  相似文献   

10.
Within the framework of spin-polarized generalized gradient approximation (σGGA) of the density functional theory (DFT) and pseudopotential method, the structural, magnetic, and electronic properties of graphene and graphane upon the adsorption of manganese atoms have been theoretically investigated. In contrast to the recent results (New J. Phys. 12, 063020 (2010)), Mn atom has been found to be adsorbed on a hollow-site configuration and no appreciable indication to substitute one of the C atoms of the graphene sheet. Unlike the recent results on Mn-doped graphane (Carbon 48, 3901 (2010)), the Mn adatom prefers to adsorb on the top of a carbon atom, forming a bridge with the uppermost hydrogen atoms. The magnetic moment of the Mn-doped graphene is found to be larger than that of the Mn-doped graphane. The structural parameters and electronic properties of both Mn-doped graphene and Mn-doped graphane are determined and compared with the available data.  相似文献   

11.
First-principles calculations were performed to investigate the structural, electronic, magnetic and optical properties of nitrogen (N) and magnesium (Mg) atom co-doped graphene systems. We observed that, N and Mg atom co-doping in graphene, introduces half-metallic properties in the electronic structure of graphene, introduces ferromagnetism behavior along with new trends in optical properties of graphene. Doping site and concentration of N and Mg atoms in graphene was changed and resulting effects of these changes on aforementioned properties were investigated. Through density of states plots we observed that, Mg atom sp orbitals mainly induced magnetic moments in graphene. It was revealed that, N/Mg atoms substitution in graphene introduces a red shift in absorption spectrum towards visible range and a finite absorption coefficient quantity value in 0 to 3 eV and 7 to 11 eV energy intervals is also produced, that is unavailable for absorption spectrum of intrinsic graphene. Moreover, N/Mg atoms co-doping produces increment in the reflectivity parameter of graphene in low lying energy region, while producing diminishing behavior in the higher energy range. These results offer a possibility to tune electronic, magnetic and optical characteristics of graphene sufficiently for utilization in graphene based spintronic and optoelectronic devices.  相似文献   

12.
通过第一原理电子结构计算来研究有序多孔纳米网的电导特性变化的能带机理.能带结构分析结果表明:石墨烯纳米网超晶格(3m,3n)(m和n为整数)的电子本征态在布里渊区中心点发生四重简并;碳空位孔洞规则排列形成的石墨烯纳米网具有由简并态分裂形成的宽度可调带隙,无论石墨烯的两个子晶格是否对等.在具有磁性网孔阵列的石墨烯纳米网中,反铁磁耦合使对称子晶格的反演对称性增加了一项量子限制条件,导致能带结构在K点的二重简并态分裂成带隙.通过控制网孔密度能够有效调节石墨烯纳米网的带隙宽度,为实现新一代石墨烯纳米电子器件提供了理论依据.  相似文献   

13.
The magnetic properties of disordered graphene and irradiated graphite are systematically studied using a combination of mean-field Hubbard model and first-principles calculations. By considering large-scale disordered models of graphene, I conclude that only single-atom defects can induce ferromagnetism in graphene-based materials. The preserved stacking order of graphene layers is shown to be another necessary condition for achieving a finite net magnetic moment of irradiated graphite. Ab initio calculations of hydrogen binding and diffusion and of interstitial-vacancy recombination further confirm the crucial role of stacking order in pi-electron ferromagnetism of proton-bombarded graphite.  相似文献   

14.
The perturbation method for bound states within the framework of the Shifman-Vainshtein-Zakharov sum rule method is studied on simple systems (linear harmonic oscillator, hydrogen atom) in external electric fields. It is pointed out that for stronger fields reasonable results for the ground-state energy can only be achieved when sum rules are written for the correction to the Euclidean Green function caused by the external field. Moreover, if the system is bound by a singular (Coulomb) potential, one needs to sum higher perturbative corrections to the Green function and to find a realistic approximation of the continuum contribution to the sum rules. The results are of relevance e.g. for calculations of nucleon magnetic moments and toponium properties via SVZ sum rules in QCD.  相似文献   

15.
We present a simple torsional potential for graphene to accurately describe its out-of-plane deformations. The parameters of the potential are derived through appropriate fitting with suitable DFT calculations regarding the deformation energy of graphene sheets folded around two different folding axes, along an armchair or along a zig-zag direction. Removing the energetic contribution of bending angles, using a previously introduced angle bending potential, we isolate the purely torsional deformation energy, which is then fitted to simple torsional force fields. The presented out-of-plane torsional potential can accurately fit the deformation energy for relatively large torsional angles up to 0.5 rad. To test our proposed potential, we apply it to the problem of the vertical displacement of a single carbon atom out of the graphene plane and compare the obtained deformation energy with corresponding DFT calculations. The dependence of the deformation energy on the vertical displacement of the pulled carbon atom is indistinguishable in these two cases, for displacements up to about 0.5 Å. The presented potential is applicable to other sp2 carbon structures.  相似文献   

16.
The interaction between graphene and a SiO(2) surface has been analyzed with first-principles DFT calculations by constructing the different configurations based on α-quartz and cristobalite structures. The fact that single-layer graphene can stay stably on a SiO(2) surface is explained based on a general consideration of the configuration structures of the SiO(2) surface. It is found that the oxygen defect in a SiO(2) surface can shift the Fermi level of graphene down which opens up the mechanism of the hole-doping effect of graphene adsorbed on a SiO(2) surface observed in a lot of experiments.  相似文献   

17.
By using density functional theory(DFT)-based first-principles calculations, the structural stability and electronic properties for two kinds of silicene domain boundaries, forming along armchair edge and zigzag edge, have been investigated. The results indicate that a linkage of tetragonal and octagonal rings(4|8) appears along the armchair edge, while a linkage of paired pentagonal and octagonal rings(5|5|8) appears along the zigzag edge. Different from graphene, the buckling properties of silicene lead to two mirror symmetrical edges of silicene line-defect. The formation energies indicate that the 5|5|8 domain boundary is more stable than the 4|8 domain boundary. Similar to graphene, the calculated electronic properties show that the 5|5|8 domain boundaries exhibit metallic properties and the 4|8 domain boundaries are half-metal.Both domain boundaries create the perfect one-dimensional(1D) metallic wires. Due to the metallic properties, these two kinds of nanowires can be used to build the silicene-based devices.  相似文献   

18.
DFT calculations of various atomic species on graphene sheet are investigated as prototypes for the formation of nano-structures on graphene. We investigate computationally the adsorption energies and migration energies in adsorption sites on graphene sheet for many atomic species, including transition metals, noble metals, nitrogen and oxygen, from atomic number 1 to 83, using the DFT calculation. The calculations are done for adatoms at three sites having symmetry, H6, B and T on a 3×3 super cell. For adsorption energy and migration energy, we performed a study that covered almost all the periodic table. The calculated results show that adsorption for metal and transition metal elements is mainly on the H6-site, whereas nonmetallic elements showed a tendency to adsorb on the B-site. When we consider a metal-graphene junction, not only the adsorption energy but also the migration energy is important. We estimate the minimum limit of the migration energy of the adatom. We found that 3d transition metals and some nonmetallic elements had very high migration energy. Our calculation will be very helpful for experimental groups that are considering the choice of electrode materials for metal-graphene junctions, and in designing nano devices, nano wires and nano switches.  相似文献   

19.
We address the electronic phase engineering in the impurity-infected functionalized bilayer graphene with hydrogen atoms (H-BLG) subjected to a uniform Zeeman magnetic field, employing the tight-binding model, the Green's function technique, and the Born approximation. In particular, the key point of the present work is focused on the electronic density of states (DOS) in the vicinity of the Fermi energy. By exploiting the perturbative picture, we figure out that how the interaction and/or competition between host electrons, guest electrons, and the magnetic field potential can lead to the phase transition in H-BLG. Furthermore, different configurations of hydrogenation, namely reduced table-like and reduced chair-like, are also considered when impurities are the same and/or different. A comprehensive information on the various configurations provides the semimetallic and gapless semiconducting behaviors for unfunctionalized bilayer graphene and H-BLGs, respectively. Further numerical calculations propose a semimetal-to-metal and gapless semiconductor-to-semimetal phase transition, respectively, when only turning on the magnetic field. Interestingly, the results indicate that the impurity doping alone affects the systems as well, leading to semimetal-to-metal and no phase transition in the pristine system and hydrogenated ones, respectively. However, the combined effect of charged impurity and magnetic field shows that the pristine bilayer graphene is not influenced much as the functionalized ones and phase back transitions appear. Tuning of the electronic phase of H-BLG by using both types of electronic and magnetic perturbations play a decisive role in optical responses.  相似文献   

20.
The elastic mechanical behavior of different sized zigzag and armchair graphene nanoribbons is numerically investigated and predicted using a new structural mechanic approach. According to the proposed method three dimensional, two nodded spring elements of three degrees of freedom per node, which remain straight when deformed, are combined in order to simulate realistically the interatomic interactions appearing within the graphene nanostructure. The computed variations of mechanical elastic properties are fitted by appropriate size dependent non-linear functions of two independent variables i.e. length and width, in order to express the analytical rules governing the elastic behavior of graphene nanoribbons within specific dimension limits. The numerical results, which are compared with corresponding data given in the open literature, demonstrate thoroughly the important influence of size and chirality of a narrow graphene monolayer on its elastic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号