首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present studies of thermal entanglement of a three-spin system in triangular symmetry. Spin correlations are described within an effective Heisenberg Hamiltonian, derived from the Hubbard Hamiltonian, with super-exchange couplings modulated by an effective electric field. Additionally a homogenous magnetic field is applied to completely break the degeneracy of the system. We show that entanglement is generated in the subspace of doublet states with different pairwise spin correlations for the ground and excited states. For the doublets with the same spin orientation one can observe nonmonotonic temperature dependence of entanglement due to competition between entanglement encoded in the ground state and the excited state. The mixing of the states with an opposite spin orientation or with quadruplets (unentangled states) always monotonically destroys entanglement. Pairwise entanglement is quantified using concurrence for which analytical formulae are derived in various thermal mixing scenarios. The electric field plays a specific role – it breaks the symmetry of the system and changes spin correlations. Rotating the electric field can create maximally entangled qubit pairs together with a separate spin (monogamy) that survives in a relatively wide temperature range providing robust pairwise entanglement generation at elevated temperatures.  相似文献   

2.
We report temperature and magnetic field dependent magnetization and quantification of entanglement from the experimental data for dichloro (thiazole) copper (II), a Heisenberg spin chain system. The plot of magnetic susceptibility vs. temperature indicates an infinite spin chain. Isothermal magnetization measurements (as functions of magnetic field) were performed at various temperatures below the antiferromagnetic (AFM) ordering, where the AFM correlations persist significantly. These magnetization curves are fitted to the Bonner–Fisher model. Magnetic susceptibility is used as an entanglement witness to quantify the amount of entanglement in the system.  相似文献   

3.
郑一丹  周斌 《物理学报》2016,65(12):120301-120301
本文研究了Na_9[Cu_3Na_3(H_2O)_9(α-As W_9O_(33))_2]·26H_2O(简记为{Cu_3})单分子磁体在热平衡和外加磁场作用下的三体纠缠性质,利用等效自旋模型和实验拟合参数,数值计算了{Cu_3}型三角自旋环中三体负性纠缠度(tripartite negativity).分别考虑沿垂直于三角自旋环方向的磁场、平行于三角自旋环方向的磁场,以及倾斜磁场的情形.结果表明,磁场的方向、大小以及温度对系统三体负性纠缠度有着重要影响.文中给出了在不同磁场方向下,临界温度随磁场强度的变化图,由此可以得到三体纠缠存在的参数区域.同时发现在特定的参数区域,该系统存在纠缠恢复现象.因此适当调节温度、磁场强度大小和磁场方向可以有效调控{Cu_3}型三角自旋环中的三体纠缠性质.  相似文献   

4.
研究了两量子比特的海森堡XXX自旋链分别处于x方向和y方向均匀外磁场时系统的纠缠特性,并用负度N来度量。得到纠缠度N的解析表达式,并在此基础上进行数值计算。仔细讨论了磁场B、温度T和自旋耦合系数J对纠缠度N的影响。结果表明:纠缠度N会随着磁场|B|和温度T的增大而减小,但会随着自旋耦合系数J的增大而增大。另外,增大的J还会使临界磁场|Bc|和临界温度Tth变大。所以,我们可以通过调节B、T和J来控制热纠缠,这对固态系统中通过构建和选择参数调整系统的纠缠度具有一定的作用和意义。研究还发现,加在x方向均匀外磁场和加在y方向均匀外磁场对两量子比特的海森堡XXX自旋链的作用效果是一样的。  相似文献   

5.
The dynamics of genuine three-qubit entanglement in Ising spin model is investigated under the effect of a uniform magnetic field with different direction. The analytic expression for the three-tangle measurement is obtained. Results show that the magnetic parameters (direction and magnitude) exert great effect on the entanglement value. The magnetic relative strength has great negative contribution on entanglement. Regardless of the magnitude of external magnetic relative strength, the entanglement value has the minimum, because of the right angle between the spin direction and external magnetic field. Efficient control of the entanglement by appropriate combinations of the tunable parameters should be possible.  相似文献   

6.
In a ferromagnetic spin chain, the control of the local effective magnetic field allows us to manipulate the static and dynamical properties of entanglement. In particular, the propagation of quantum correlations can be driven to a great extent so as to achieve an entanglement transfer on demand toward a selected site.  相似文献   

7.
刘贵艳  毛竹  周斌 《物理学报》2018,67(2):20301-020301
研究具有次近邻相互作用五量子比特XXZ海森伯自旋链在磁场作用下的热纠缠性质,利用数值计算求出最近邻两量子比特和次近邻两量子比特的共生纠缠度(concurrence),分别记为C_(12)和C_(13).研究结果表明,阻挫参数对配对热纠缠具有重要影响,而且阻挫参数的变化对C_(12)和C_(13)的影响也各不相同;温度、磁场、Dzyaloshinkii-Moriya相互作用以及各向异性参数对配对热纠缠有着不同程度的影响;通过选择适当的模型参数,可以有效地调节和提高五量子比特XXZ海森伯自旋链的配对热纠缠.  相似文献   

8.
The spin Hall effect—the excitation of a spin flux by an electric current normal to it—is considered in a paramagnetic sample in disregard of the spin-orbit coupling in the classical Hall effect case, when the Pauli spin polarization is induced by the magnetic field H 0 normal to the electric current.  相似文献   

9.
The effect of an electric field on the ground state energy of an exciton bound to an ionized donor (D+, X) was studied in CdSe spherical quantum dots where quantum confinement is described by an infinitly deep potential. Calculations have been performed in the framework of the effective mass approximation using a variational method by choosing an appropriate sixty-terms wave function taking into account different interparticles correlations and symetry distorsion induced by the electric field. It appears that the Stark shift is significant even for low fields and depends strongly of spherical dot sizes. The competition between the confinement effect and the Stark effect is discussed as function of the spherical dot size and the applied electric field strength. The (D+, X) Stark shift is estimated and its behavior is discussed as a function of the dot radius and electric field strength. The electron and hole average distances have also been calculated and the role of the ionized donor in the excitonic dissociation is established.  相似文献   

10.
The present work is concerned with an analysis of the entanglement between the electronic coherent superpositions of spin states and subbands in a quasi-one-dimensional Rashba nanoloop acted upon by a strong perpendicular magnetic field. We explicitly include the confining potential and the Rashba spin-orbit coupling into the Hamiltonian and then proceed to calculate the von Neumann entropy, a measure of entanglement, as a function of time. An analysis of the von Neumann entropy demonstrates that, as expected, the dynamics of entanglement strongly depends upon the initial state and electronic subband excitations. When the initial state is a pure one formed by a subband excitation and the z-component of spin states, the entanglement exhibits periodic oscillations with local minima (dips). On the other hand, when the initial state is formed by the subband states and a coherent superposition of spin states, the entanglement still periodically oscillates, exhibiting stronger correlations, along with elimination of the dips. Moreover, in the long run, the entanglement for the latter case undergoes the phenomenon of collapse-revivals. This behaviour is absent for the first case of the initial states. We also show that the degree of entanglement strongly depends upon the electronic subband excitations in both cases.  相似文献   

11.
Taking the decoherence effect due to population relaxation into account, we investigate the entanglement properties for two qubits in the Heisenberg XY interaction and subject to an external magnetic field. It is found that the phenomenon of entanglement sudden death (ESD) as well as sudden birth (ESB) appear during the evolution process for particular initial states. The influence of the external magnetic field and the spin environment on ESD and ESB are addressed in detail. It is shown that the concurrence, a measure of entanglement, can be controlled by tuning the parameters of the spin chain, such as the anisotropic parameter, external magnetic field, and the coupling strength with their environment. In particular, we find that a critical anisotropy constant exists, above which ESB vanishes while ESD appears. It is also notable that stable entanglement, which is independent of different initial states of the qubits, occurs even in the presence of decoherence.  相似文献   

12.
The effect of Dzialoshinski-Moriya (DM) interaction on thermal entanglement of a two-qubit XXZ spin chain in a homogenous magnetic field is investigated. It is found that the DM interaction can enhance thermal entanglement. When D is large enough, the entanglement can exist for larger temperatures and strong magnetic field.  相似文献   

13.
郑一丹  毛竹  周斌 《物理学报》2017,66(23):230304-230304
研究了具有三角自旋环的伊辛-海森伯链在磁场作用下的热纠缠性质.分别讨论了三角自旋环中自旋1/2粒子间相互作用的三种情形,即XXX,XXZ和XY Z海森伯模型.利用转移矩阵方法,数值计算了具有三角自旋环的伊辛-海森伯链的配对纠缠度.计算结果表明,外加磁场强度和温度对系统处于上述三种海森伯模型的热纠缠性质均有重要影响.给出了系统在不同的海森伯模型下,纠缠消失对应的临界温度随磁场强度的变化图,由此可以得到系统存在配对纠缠的参数区域,同时发现在特定的参数区域存在纠缠恢复现象.因此适当调节温度和磁场强度,可以有效调控具有三角自旋环的伊辛-海森伯链热纠缠性质.  相似文献   

14.
《Physics letters. A》2014,378(30-31):1985-1991
In the present article we report the dynamics of electronic spin–subbands, as well as subband–subband, hybrid entanglements in a two-dimensional anisotropic quantum dot. The dot is under the influence of Rashba effect and an external magnetic field. To study the hybrid entanglements, we partition the system into two categories in which either spatial degrees of freedom, subbands, entangle with the spin or the subbands become entangled amongst themselves. For the first case we calculate the von Neumann entropy, while for the latter the negativity is calculated. Our calculations show that for both cases information is periodically distributed between the corresponding subspaces. Effects of Rashba parameter and magnetic field on the characteristics of such oscillatory behavior are also discussed. For spin–subband entanglement the oscillations include dips, surrounded by plateaus of maximal entanglement. The subband–subband entanglement shows vanishingly small plateaus. The duration of plateaus is controlled by Rashba coupling and the external field.  相似文献   

15.
The time evolution of the entanglement of a pair of two spin qubits is investigated when the two qubits simultaneously couple to an environment of an anisotropic Heisenberg XXZ spin chain. The entanglement of the two spin qubits can be created and is a periodic function of the time if the magnetic field is greater than a critical value. If the two spin qubits are in the Bell state, the entanglement can be stored with relatively large value even when the magnetic field is large.  相似文献   

16.
The effect of Dzialoshinski-Moriya (DM) interaction on thermal entanglement of a two-qutrit XX spin chain in a homogenous magnetic field is investigated. Our results imply that DM interaction and the magnetic field play competing roles in enhancing thermal entanglement.  相似文献   

17.
A key element in the architecture of quantum information processing is a reliable physical interface between fields and qubits. Here, we study the population transfer and entanglement for a two-level atomic system interacting with entangled spin coherent states (ESCSs) considering one- and two-mode interactions. The results show that decrease in the spin number provides a periodic behavior of the entanglement exhibiting the sudden death and birth phenomena. For large values of spin, the atom–field system stabilizes at high value of entanglement during the time evolution exhibiting maximum correlations for both cases of one- and two-mode interactions. Finally, we find an interesting correlation between the entanglement and the population transfer during the time evolution. In particular, we show that the population may be used as an indicator of nonlocal correlations in the system under consideration.  相似文献   

18.
The time evolution of the linear entropy of an taking into consideration Stark shift and Kerr-like medium. atom in k-photon daynes-Cummings model is investigated The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement.  相似文献   

19.
In this paper, we study the time evolution of the entropies and the degree of entanglement in the mixed state for a multi-quanta JC model taking into consideration Stark shift and Kerr-like medium effect, we use a numerical method to investigate the time evolution of the partial entropy of the atom and field subsystem. This is done in the framework of the multi-quanta presses JC model with both the Stark shift and Kerr-like medium effect added. Furthermore, we examine the effect of the superposition states and a statistical mixture of coherent states as an initial field on the entropies and entanglement. Our results show that the setting of the initial state play an important role in the evolution of the sub-entropies and entanglement.  相似文献   

20.
M Bagheri Harouni 《中国物理 B》2021,30(9):90301-090301
Quantum speed limit and entanglement of a two-spin Heisenberg XYZ system in an inhomogeneous external magnetic field are investigated. The physical system studied is the excess electron spin in two adjacent quantum dots. The influences of magnetic field inhomogeneity as well as spin–orbit coupling are studied. Moreover, the spin interaction with surrounding magnetic environment is investigated as a non-Markovian process. The spin–orbit interaction provides two important features: the formation of entanglement when two qubits are initially in a separated state and the degradation and rebirth of the entanglement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号