首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
采用基于格子模型的Monte Carlo模拟方法,考察了链长分别为30和250的线形高分子在管道内受限状态下的尺寸及扩散性质.结果表明,当线形高分子的链长低于其缠结链长时,其受限条件下高分子的性质随受限程度的变化而单调变化;而当线形高分子的链长大于缠结链长时,高分子的性质表现出非单调性,进而说明受限具有一定程度的解缠结...  相似文献   

2.
采用非平衡态分子动力学模拟研究了剪切场下棒状纳米粒子对高分子基体的结构、 动力学和流变性质的影响. 通过比较多种体积分数(0.8%~10%)的纳米复合物及纯熔体的模拟结果发现, 随着纳米粒子的增加, 高分子链的扩散和松弛逐渐受到抑制, 而链尺寸几乎保持不变. 从Weissenberg number(Wi)角度看, 在剪切流场下, 高分子链的结构性质(如归一化的均方回转半径、 回转张量和取向抑制参数)几乎与纳米粒子的体积分数无关, 而高分子链的Tumbling运动受到抑制. 研究还发现, 纳米复合物与纯熔体的剪切黏度曲线趋势基本一致, 即Wi=1将曲线分为平台区和剪切变稀区. 纳米棒的加入仅定量地改变了流体的剪切黏度.  相似文献   

3.
采用分子动力学模拟的方法研究了长短链二元线形高分子共混熔体在平衡态下的结构、动力学性质以及黏度.结果表明:共混对组分的结构性质没有影响,共混体系中2组分各自的均方回转半径以及均方末端距均与单分散体系中相同;共混显著地影响动力学性质,即长链在共混体系中的扩散和松弛会加快,相反,短链的扩散和松弛则会变慢;另外,该共混体系的黏度符合简单的线性叠加.  相似文献   

4.
聚氧乙烯超薄膜中构象变化的红外光谱研究   总被引:1,自引:0,他引:1  
近年来 ,有关聚合物薄膜的研究受到了广泛关注 .低维数高分子超薄膜的各种行为由于涉及到高分子运动的动力学、热力学本质而逐渐成为高分子科学研究中的一大热点 .实验结果表明[1~ 3] ,几何受限条件和基板对于聚合物薄膜结晶的形态及性能都会产生显著影响 .广角 X射线衍射实验和自由表面的掠入射 X射线实验 [4 ]表明 ,有些在本体中呈现液晶有序的聚酰亚胺在靠近基板附近变得更加有序 .Despotopoulou等 [5] 对聚二正己基硅烷在超薄膜中构象扰动的观察发现 ,当膜厚小于 2 0 0 nm时 ,聚二正己基硅烷的侧链变得无序 ,傅里叶变换红外光谱测试…  相似文献   

5.
采用Monte Carlo微观模拟结合原始路径分析的方法,研究了分子量双分散的高分子薄膜中短链的质量分数对长链的缠结和动力学行为的影响.模拟发现,当短链的质量分数较大时,薄膜内缠结点之间的关联性较低,缠结点易于被解开,长链动力学受到链受限程度的控制,随着膜厚的减小单调减慢;当短链的质量分数较小时,薄膜内缠结点之间的关联性较高,缠结点不易被解开,缠结点数目和关联性共同导致长链动力学随膜厚的非单调变化.模拟结果为明晰分子量分布对高分子薄膜中链缠结和动力学行为的影响规律提供了有益参考.  相似文献   

6.
采用布朗动力学方法,通过模拟不同温度和流速下,不同链长的单链高分子穿过纳米孔洞的动力学行为,证实了临界流速的存在,并验证了理论预测的结果,即临界流量随体系温度线性增大,且与链长无关.还对高分子链过孔输运时间以及输运过程中链构象的变化进行了研究.模拟结果为明晰在剪切流场中高分子穿过纳米孔洞的动力学行为提供了有益参考.  相似文献   

7.
采用Langevin动力学方法模拟研究了弱电场驱动下高分子链在无限长周期管道中的输运过程. 管道由长度相等的αβ两部分周期排列而成, 其中高分子链与α管道间存在相互吸引作用, 而与β管道间存在纯排斥作用. 模拟结果表明, 高分子链在输运过程中存在明显的受限阶段, 其逃离受限的方式与管道宽度有关且满足不同的规律. 对于窄管道, 高分子链在输运过程中呈直线伸展构型且运动具有“蛇爬行”特征. 高分子链逃离受限过程伴随着整条链的运动, 从而导致迁移率随高分子链长呈周期变化, 而且在迁移率极值位置, 高分子链投影长度与管道半周期之间存在简单的整数倍关系. 对于宽管道, 高分子链在输运过程中出现弯折构型且运动具有“蠕虫运动”特征. 当链长比较长时, 高分子链可通过链前端部分的伸长逃离受限, 从而导致迁移率与高分子链长度无关. 模拟结果可能有助于利用周期管道对不同长度的高分子链进行分离及可控输运.  相似文献   

8.
聚合物熔体膜在基体表面上的润湿和铺展行为受铺展系数和Hamaker常数影响。对于不能在基体表面上铺展的聚合物膜,当处于其玻璃化温度以上时,聚合物熔体膜将破裂,出现非连续区域。随着体系处于聚合物玻璃化温度以上时间的延长,非连续部分尺寸不断增长,增长速率与表面张力、聚合物粘度、聚合物液滴在基体表面的平衡接触角等因素有关,平衡后聚合物以液滴的形式在基体表面稳定存在。将带功能端基聚合物加入不能在基体表面上铺展的聚合物中,通过修饰聚合物与基体界面或改变聚合物熔体膜的表面张力,可以使原来不能在基体表面铺展的聚合物保持稳定。本文综述了聚合物熔体膜的铺展和润湿动力学研究进展,并归纳了使聚合物熔体膜稳定的方法。  相似文献   

9.
聚合物粘弹性的分子理论,主要是以Rou-se的珠簧模型为基础发展起来的。Rouse模型未曾考虑到分子链之间存在着缠结效应,因此只适用于稀溶液,而无法推广到高分子浓溶液和熔体等稠厚体系。即使象零切粘度与分子  相似文献   

10.
高分子的长链特征使其对纳米到微米尺度的空间受限非常敏感,也是当前微电子电路、微器件传感器等领域材料制造及其工艺研发中的关键之一.本工作从不同缠结程度的窄分布聚苯乙烯出发,以不同孔径的阳极氧化铝模板为二维受限空间,研究了高分子熔体在其中的纳米受限流动行为.我们发现,缠结程度低的聚苯乙烯在受限流动初期显著快于本体,后因缠结恢复逐渐降至与本体相当,缠结恢复时间尺度与宏观流变实验获得的缠结恢复时间处于同一个数量级.我们认为缠结程度降低后流动的加速来源于受限状态时在压力梯度推动下高分子链通过蛇行进入孔道的速率加快;同时受限链段由于非平衡构象增多而重排更加频繁,导致强受限程度下部分解缠结样品的缠结恢复加快.本文希望通过对链缠结在高分子链进入受限空间中作用的探索,为受限态高分子复合材料的加工工艺提供新的理解.  相似文献   

11.
The authors present the results of molecular dynamics simulations of polymer films confined by smooth walls. Simulations were performed for a wide range of chain lengths covering both nonentangled and entangled regions, as well as film thicknesses ranging from the order of unperturbed chain size to the bulk state. The simulation results for the chain size dependence on the film thickness are compared with the prediction of the scaling model. By measuring the correlation function of the end-to-end vectors, we have determined the relaxation time of confined polymer chains in different entangled states. It is shown that there is a minimum in the relaxation time of long chains when decreasing the film thickness, which is partially due to the confinement-induced disentanglement effect.  相似文献   

12.
乙基氰乙基纤维素/交联聚丙烯酸复合物膜的溶胀行为   总被引:4,自引:1,他引:3  
研究了乙基氰乙基纤维素 [(E CE)C] 交联聚丙烯酸 [PAA]胆甾相液晶复合物膜的厚度以及膜的组成对膜在水中的溶胀行为的影响 .复合物膜越厚则达到溶胀平衡所需要的时间越长 ,但是其最大溶胀率是相同的 .复合物膜的最大溶胀率先是随着 (E CE)C浓度的增加而增加 ,当 (E CE)C的浓度大于 5 1wt%的时候 ,复合物膜的最大溶胀率几乎不再发生变化 .复合物膜的交联密度越大 ,其最大溶胀率越小 ,溶胀速率也随着膜的交联 (点 )密度的增加而减小 .研究还发现复合物膜的交联 (点 )密度越大 ,其溶胀前后最大选择性反射光波长的位移也越小 .  相似文献   

13.
Gas permeability and thin-film interferometry are used as a tool to elucidate the orientation of polymeric headgroups in free-standing foam films. Nonionic polyoxyethylene (EO) surfactants were used to stabilize the foam films, keeping the size of the hydrophobic part constant (C12) and varying the size of the hydrophilic (EO numbers) part. The effect of headgroup size on the gas permeability of Newton black foam films was studied. Thickness, contact angle, and surface tension were measured to understand the permeation mechanism. Increase of film thickness and surface tension was observed while increasing the headgroup size, but the contact angle remains small and constant. Upon increasing the headgroup size, the permeability decreases showing that the headgroups provide a resistance to permeation. For smaller headgroups, the permeability follows a linear dependence on the film thickness, whereas for larger headgroups, the permeability essentially deviates from linearity. We use the conventional "coil model" of the EO chains to explain the observed results providing a detailed picture of the orientation of this important molecule in a confined volume of foam films.  相似文献   

14.
The surface morphology of thin bilayer polymer films on top of glass substrates was investigated. The bilayer consists of a blend film of protonated and deuterated polystyrene and an underlying deuterated polystyrene film. Choosing the thickness of the top film larger than 8 times and smaller than 2 times the radius of gyration of the chains enables the determination of film thickness and confinement effects. With diffuse neutron scattering at grazing incidence in the region of total external reflection, a depth sensitivity and a contrast even at the internal polymer–polymer interface was achieved. The underlying film is conformal to the substrate, and depending on the thickness of the top film two different types of roughness correlations are observed. Thin confined films nestle to the underlying polymer films, while the stiffness of thicker bulky films provides an independent morphology. In both cases, annealing above the glass-transition temperature yields an interdiffusion at the internal polymer–polymer interface, and the polymer–air surface remains essentially unchanged with respect to roughness correlations. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2862–2874, 1999  相似文献   

15.
We present Monte Carlo simulation data on conformations and dynamics of polymer melts confined in narrow slits of different widths and compare with data of bulk systems. We find that in confined geometries the chains swell laterally; they retain and even expand their spatially long-range correlations compared to bulk polymers and in contrast to the assumption of a complete screening of excluded volume. Long chains in bulk melts show entangled dynamics with a clear signature of a t1/4-power law for the mean square displacements of innermost monomers at intermediate time scales. This behavior is gradually lost by confining the melts in slits with decreasing width. For ultra-thin films, the dynamics appears to follow a Rouse-like behavior over the entire subdiffusive regime. However, the terminal relaxation time is significantly increased compared to Rouse relaxation. This interesting observation was not reported previously and is the focus of our ongoing research.  相似文献   

16.
We studied the static and dynamic properties of unentangled polymer chains which have a variable strength of interaction with the confining smooth walls by means of the lattice Monte Carlo simulation based on the bond-fluctuation model, that is, investigated the wall-polymer interactions which systematically vary from attraction to repulsion. A critical value of attractive potential(εwc) is found to be -0.6kBT, and only below it can the adsorption layer of monomers be formed near the wall. At the critical point of attraction εwc, attractive interaction counterba- lances the wall-polymer excluded volume effect, which minimizes the confinement effects on both chain dimension and mobility. Influences on both chain dimension and mobility increase with the increasing of either attraction or repulsion imposed by the walls. Despite of the nature and strength of the wall-polymer interaction, with the decrease of film thickness, configurations more parallelly aligned and flattened are adopted by confined chains, and a systematic trend of deceleration is found. Variations of chain dynamics with both film thickness and wall-polymer interaction can be well explained by the corresponding changes in the confinement of the nearest-neighboring particles that surround the chains. Besides, the thickness of the interfacial layer inside polymer films, where chains adopt a flattened “pancake” shape, is about two times the bulk radius of gyration and independent of the wall-polymer interaction.  相似文献   

17.
We present dewetting experiments on thin polymer films as a function of cross-linking density. Covalent cross-links were obtained in the glassy state on the basis of azide photochemistry of linear random copolymers of styrene and p-(azidomethyl)styrene, i.e., 106 and 2500 kg/mol with 7% and 1% azide functionality among the polymer backbone, respectively. Upon ultraviolet radiation, azides generate highly unstable nitrene radicals which react with the surrounding polymer backbone, yielding covalent cross-links. We determined the probability for film rupture, defined by the number of holes formed per unit area, and the relaxation time (tauw) of residual stresses which resulted from the film preparation process. For the lower molar mass polymer studied and for azide conversion rates lower than 60%, only partial cross-linking occurred. The effective molar mass of the polymer increased, and consequently, an increase in tauw was observed. The increase in tauw was accompanied by a decrease in hole density, indicating that the still present residual stresses in the films were not able anymore to rupture the films at the high probability of un-cross-linked polymers. For high conversion (>60%), cross-linking was significant enough to lead to the formation of a three-dimensional rubbery network which, in turn, generated an elastic force that counteracted the driving forces. This elastic force eventually inhibited dewetting and the relaxation of residual stresses. Thus, at high conversions, the relaxation time tauw grew exponentially and the number of holes tended toward zero. For the higher molar mass polymer, no changes in the relaxation time tauw were observed for low conversion (<30%). However, at a higher conversion rate, tauw increased drastically, suggesting an almost infinitely long relaxation time at 100% conversion. Consequently, to successfully stabilize thin polymer films by cross-linking, it is preferable to use long polymer chains.  相似文献   

18.
The oxidation rates of polypyrrole films at different temperatures fit Arrhenius plots, allowing the obtention of the activation energy for the reaction. The activation energy increases for rising thicknesses, up to 4 μm, of the polymer film and decreases for rising film thicknesses. Those values include the constant chemical activation energy and the energy required to relax the polymeric structure allowing the entrance of anions from the solution. The existence of a maximum on the polymeric relaxation energy points to a parallel change on the film molecular structure during the electropolymerization time. The variation of the diffusion coefficient per degree of temperature for the counterions, as a function of the film thickness, is similar to that obtained for the activation energy. Diffusion coefficients were obtained from the electrochemical stretched exponential describing a range of relaxation behaviors in disordered and non-equilibrium systems.  相似文献   

19.
Summary: The monitoring of poly(di-n-hexylgermane) (PDHG) optical spectra in a variety of structures ranging from a bulk film to a nanosize polymer confined into a nanopore of SBA-15 was performed using the fluorescence and fluorescence excitation spectra in the temperature range from 5 to 240 K as well as the absorption and FTIR spectra at room temperature. The observed data were compared with those obtained for poly(di-n-hexylsilane). It was shown that PDHG film absorption and fluorescence spectra strongly depend on the polymer thickness and consist of a number of bands which were assigned to centers with different amount of trans- and gauche- conformers of the polymer chains. Conformations of the polymer chains found in a thin film and in a 10 nm pore are similar while differing from the conformations of a thick film. Optical spectra of the confined PDHG are blue-shifted relative to those of a thin film. The PDHG polymer chain conformation becomes disordered with the decrease of the polymer film thickness and the nanopore size from 10 to 6 nm.  相似文献   

20.
Ink‐jet printing (IJP) represents a highly promising liquid processed polymer deposition method for the film preparation of functional polymers in photo‐electronic devices. In this report, the results on the IJP of a fluorene‐based electroluminescent polymer, poly(9,9‐dihexylfluorene‐alt‐2,5‐dioctyloxybenzene) (PF6OC8), from a piezoelectric droplet generator are presented. The polymer film thickness has been found to show an approximate linear relation with the number of droplets per unit area; it is thus convenient to control the film thickness by the space of printed dots in IJP process. In comparison, spin coating approach is also used to prepare polymer films with different thicknesses by varying solution concentration and spinning speed. However, it is found that spin coating is difficult to control the film thickness quantitatively. The influence of film thickness on the photoluminescence (PL) properties of PF6OC8 films prepared by IJP and spin coating is comparatively investigated. For both ink‐jet printed and spin coated films, the intensity of PL spectra first increases and then decreases with increase in the film thickness, probably due to the exciton quenching in thicker films. When the polymer film thickness is at nanoscale, the major peak in the PL spectrum is the 0–0 vibronic emission at about 420 nm, and with increase in the film thickness, the 0–1 vibronic peak at about 440 nm becomes dominant. The red‐shifted PL spectra with increase in film thickness show the change from the 2D exciton state to the 3D one. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号