首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The two ligands 1 (4'-(3-anisylphenyl)-2,2';6',2' '-terpyridine) and 2 (2-mesityl-8-anisyl-1,10-phenanthroline) (Scheme 2) were synthesized and coordinated to ruthenium. The corresponding complexes Ru(1)(2)(L)n+, where L = Cl-, CH3CN, or C5H5N, have been fully characterized. Notably, the hindering mesityl group of the phenanthroline ligand was shown to lie opposite to the monodentate ligand L both in solution and in the solid state. Upon irradiation in acetonitrile or pyridine, quantitative isomerization of the complex occurred, which consisted of a 90 degrees rotation of the bidentate chelate. In the new isomers the mesityl group was shown to pi stack to the coordinated monodentate ligand with the anisyl group of the phen (1,10-phenanthroline) lying on the other side of the ruthenium atom. The back reaction was performed by heating the photochemical isomers of the complexes in DMSO and exchanging the DMSO with chloride anion, acetonitrile, or pyridine. The stability of the ruthenium(II)-pyridine bond was used in order to inscribe the Ru(terpy)(phen) motif in a molecular ring. Functionalization of the ligands and subsequent cyclization reaction on the complex were performed on the two isomers of Ru(1)(2)(C5H5N)2+. Four macrocyclic complexes including the Ru(terpy)(phen)(py)n+ moiety were obtained and characterized. A (CH2)18 alkane chain or polyethylene glycol chain formed the flexible part of the ruthena-macrocycles. Upon visible light irradiation a dramatic geometrical changeover of the cyclic complex took place, which could be reversed thermally.  相似文献   

2.
The reactions of bidentate diimine ligands (L2) with binuclear [Ru(L1)(CO)Cl2]2 complexes [L1 not equal to L2 = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (4,4'-Me2bpy), 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me2bpy), 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me2phen), di(2-pyridyl)ketone (dpk), di(2-pyridyl)amine (dpa)] result in cleavage of the dichloride bridge and the formation of cationic [Ru(L1)(L2)(CO)Cl]+ complexes. In addition to spectroscopic characterization, the structures of the [Ru(bpy)(phen)(CO)Cl]+, [Ru(4,4'-Me2bpy)(5,6-Me2phen)(CO)Cl]+ (as two polymorphs), [Ru(4,4'-Me2bpy)(4,7-Me2phen)(CO)Cl]+, [Ru(bpy)(dpa)(CO)Cl]+, [Ru(5,5'-Me2bpy)(dpa)(CO)Cl]+, [Ru(bpy)(dpk)(CO)Cl]+, and [Ru(4,4'-Me2bpy)(dpk)(CO)Cl]+ cations were confirmed by single crystal X-ray diffraction studies. In each case, the structurally characterized complex had the carbonyl ligand trans to a nitrogen from the incoming diimine ligand, these complexes corresponding to the main isomers isolated from the reaction mixtures. The synthesis of [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)(NO3)]+ from [Ru(4,4'-Me2bpy)(5,6-Me2bpy)(CO)Cl]+ and AgNO3 demonstrates that exchange of the chloro ligand can be achieved.  相似文献   

3.
We report crystalline mixed-ligand copper complexes with phenanthroline and isocyanides with almost millesecond emission lifetimes that are efficient dioxygen sensors. The oxygen sensitivity of the prototype ([Cu(CN-xylyl)(2)(dmp)]tfpb, dmp = 2,9-dimethyl-1,10-phenanthroline; CN-xylyl = 2,6-dimethylphenylisocyanide; tfpb = tetrakis(bis-3,5-trifluoromethylphenylborate) is 38 times better than that of [Ru(phen)(3)]tfpb(2) (phen = 1,10-phenanthroline).  相似文献   

4.
A series of platinum(II) complexes with the formulas Pt(diimine)(pip(2)NCNH(2))(L)(2+) [pip(2)NCNH(2)(+) = 2,6-bis(piperidiniummethyl)phenyl cation; L = Cl, Br, I, NCS, OCN, and NO(2); diimine = 1,10-phenanthroline (phen), 5-nitro-1,10-phenanthroline (NO(2)phen), and 5,5'-ditrifluoromethyl-2,2'-bipyridine (dtfmbpy)] were prepared by the treatment of Pt(pip(2)NCN)Cl with a silver(I) salt followed by the addition of the diimine and halide/pseudohalide under acidic conditions. Crystallographic data as well as (1)H NMR spectra establish that the metal center is bonded to a bidentate phenanthroline and a monodentate halide/pseudohalide. The pip(2)NCNH(2)(+) ligand with protonated piperidyl groups is monodentate and bonded to the platinum through the phenyl ring. Structural and spectroscopic data indicate that the halide/pseudohalide group (L(-)) and the metal center in Pt(phen)(pip(2)NCNH(2))(L)(2+) behave as Br?nsted bases, forming intramolecular NH···L/NH···Pt interactions involving the piperidinium groups. A close examination of the 10 structures reported here reveals linear correlations between N-H···Pt/L angles and H···Pt/L distances. In most cases, the N-H bond is directed toward the Pt-L bond, thereby giving the appearance that the proton bridges the Pt and L groups. In contrast to observations for Pt(tpy)(pip(2)NCN)(+) (tpy = 2,2';6',2"-terpyridine), the electrochemical oxidation of deprotonated adducts, Pt(diimine)(L)(pip(2)NCN), is chemically and electrochemically irreversible.  相似文献   

5.
Cheung AW  Lo LT  Ko CC  Yiu SM 《Inorganic chemistry》2011,50(11):4798-4810
New classes of tunable rhenium(I) diimine luminophores with formula of [Re(CO)(CNR)(3)(N-N)]PF(6) and [Re(CO)(L(x))(CNC(6)H(4)Cl-4)(2)(1,10-phenanthroline)]PF(6), (R = C(6)H(5), 4-BrC(6)H(4), 4-ClC(6)H(4), 4-MeOC(6)H(4), 2,6-(i)Pr(2)C(6)H(3); N-N = 1,10-phenanthroline, 5,6-dibromo-1,10-phenanthroline, 4,4'-di-tert-butyl-2,2'-bipyridine; L(x) = MeCN, pyridine and PPh(3)) have been synthesized. Different synthetic routes including photo-ligand substitution and thermal carbonyl ligand substitution through the oxidative decarbonylation with trimethyl amine N-oxide, for the facial and meridional isomeric forms of [Re(CO)(CNR)(3)(N-N)]PF(6) were investigated. On the basis of these synthetic strategies, different ligand modification and functionalization of the rhenium(I) diimine luminophores with tailored excited state properties could be readily achieved. The structures of both facial and meridional conformations of [Re(CO)(CNR)(3)(N-N)]PF(6) and the complex precursors fac-[Re(CO)(3)(CNC(6)H(3)(i)Pr-2,6)(3)]OTf were determined by X-ray crystallography. These complexes display an orange to red (3)MLLCT [dπ(Re) → π*(N-N)] phosphorescence at room temperature. Detailed photophysical investigations revealed that the physical, photophysical, electrochemical, and excited state properties can be fine-tuned and tailored through the modifications of the substituents on isocyanide or diimine ligands.  相似文献   

6.
We report two new synthetic routes to the dinuclear Ru(I) complexes, [Ru(I)(2)(RCO(2))(CO)(4)(N( wedge )N)(2)](+) (N( wedge )N = 2,2'-bipyridine or 1,10-phenanthroline derivatives) that use RuCl(3).3H(2)O as a starting material. Direct addition of the bidentate diimine ligand to a methanolic solution of [Ru(CO)(2)Cl(2)](n) and sodium acetate yielded a mixture of [Ru(I)(2)(MeCO(2))(CO)(4)(N( wedge )N)(2)](+) (N( wedge )N = 4,4'-dmbpy, and 5,6-dmphen), and [Ru(II)(MeCO(2))(2)(CO)(2)(N( wedge )N)] (N( wedge )N = 4,4'-dmbpy and 5,5'-dmbpy). Single-crystal X-ray studies confirmed that the Ru(II) complexes had a trans-acetate-cis-carbonyl arrangement of the ligands. In contrast, the use of sodium benzoate resulted in the unexpected formation of a Ru-C bond producing ortho-cyclometalated complexes, [Ru(II)(O(2)CC(6)H(4))(CO)(2)(N( wedge )N)], where N( wedge )N = bpy or phen. A second approach used ligand exchange between a bidentate ligand (N( wedge )N) and the pyridine ligands of [Ru(I)(RCO(2))(CO)(2)(py)](2) to convert these neutral complexes into [Ru(I)(2)(RCO(2))(CO)(4)(N( wedge )N)(2)](+). This method, although it involved more steps, was applicable for a wider variety of diimine ligands (R = Me and N( wedge )N = 4,4'-dmbpy, 5,5'-dmbpy, 5,6-dmphen; R = Ph and N( wedge )N = bpy, phen, 5,6-dmphen).  相似文献   

7.
Seven useful mixed-ligand complexes in the form of [Ir(terpy)(L)Cl]2+ were prepared and their spectroscopic and electrochemical properties were investigated. The ligands used were terpy = 2,2':6',2'-terpyridine, L = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 4,4'-diphenyl-2,2'-bipyridine, 1,10-phenanthroline, 5-phenyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2,3-bis(2-pyridyl)pyrazine. Synthetic methods were developed by a sequential ligand-replacement which occurred in the reaction vessel using a microwave oven. All complexes showed that LUMOs are based on the pi-system contribution of the terpyridine ligand for [Ir(terpy)(bpy)Cl]2+, [Ir(terpy)(dmbpy)Cl]2+, [Ir(terpy)(dpbpy)Cl]2+, [Ir(terpy)(phen)Cl]2+, [Ir(terpy)(dpphen)Cl]2+ and [Ir(terpy)(phphen)Cl]2+. On the other hand, the LUMO in the [Ir(terpy)(bppz)Cl]2+ complex is localized on the pi-system of the bppz ligand, whereas the HOMOs in the iridium complexes are localized on the terpyridine ligand. It was found that Ir(terpy)(L)Cl emits in a fluid solution at room temperature. The ancillary ligands, such as terpy and bpy, have been explored to extend the lifetime of the triplet 3(pi-pi') excited states of Ir(III) terpyridine complexes. Ir(III) terpyridine units with an electron donor (dmbpy) or electron acceptor substituents (terpy, dpbpy, phphen, dpphen and bppz) are found to decrease the energy of the 3LC states for use as photosensitizer molecular components in supramolecular devices. The spectroscopic and electrochemical details are also reported herein.  相似文献   

8.
Lo KK  Hui WK 《Inorganic chemistry》2005,44(6):1992-2002
This paper describes the design of a series of luminescent rhenium(I) polypyridine biotin complexes containing different spacer-arms, [Re(N-N)(CO)3 (py-4-CH2-NH-biotin)](PF6) (py-4-CH2-NH-biotin = 4-(biotinamidomethyl)pyridine; N-N = 1,10-phenanthroline, phen (1a), 3,4,7,8-tetramethyl-1,10-phenanthroline, Me4-phen (2a), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, Me2-Ph2-phen (3a), dipyrido[3,2-f:2',3'-h]quinoxaline, dpq (4a)), [Re(N-N)(CO)3 (py-3-CO-NH-en-NH-biotin)](PF6) (py-3-CO-NH-en-NH-biotin = 3-(N-((2-biotinamido)ethyl)amido)pyridine; N-N = phen (1b), Me4-phen (2b), Me2-Ph2-phen (3b), dpq (4b)), and [Re(N-N)(CO)3 (py-4-CH2-NH-cap-NH-biotin)](PF6) (py-4-CH2-NH-cap-NH-biotin = 4-(N-((6-biotinamido)hexanoyl)aminomethyl)pyridine; N-N = phen (1c), Me4-phen (2c), Me2-Ph(2)-phen (3c), dpq (4c)). Upon irradiation, all of the rhenium(I)-biotin complexes exhibited intense and long-lived triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Re) --> pi* (diimine)) emission in fluid solutions at 298 K. The interactions of these biotin-containing complexes with avidin have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, emission titrations, and competitive association and dissociation assays. On the basis of the results of these experiments, homogeneous assays for biotin and avidin have been designed.  相似文献   

9.
A dissymmetric 1,10-phenanthroline chelate (N-phen-S) bearing two polyether chains terminated by two monodentate ligands of the benzonitrile (N) and dialkylesulfoxide (S) types was synthesized, characterized, and coordinated to ruthenium. The corresponding Ru(terpy)(N-phen-S)2+ complexes (terpy = 4'-(3,5-ditertiobutylphenyl)-2,2';6',2' '-terpyridine) were fully characterized as being two coordination isomers of the scorpionate type with one of the two tails occupying the sixth position on the coordination sphere. Photoexpulsion of the coordinated tail led to opening of the ruthena-macrocycle and subsequent rearrangement of the bidentate chelate. This rearrangement consisted of a 90 degrees rotation of the phenanthroline around the ruthenium atom. Selective irradiation of one isomer in a mixture of the two was undertaken using band-pass filters; this resulted in an enrichment of the nonirradiated isomer in the mixture. Thermal back-coordination of the tail was investigated in the dark. It took place quantitatively from the corresponding ruthenium chloride complex by trapping of the anion with silver salts.  相似文献   

10.
11.
Lo KK  Tsang KH  Hui WK  Zhu N 《Inorganic chemistry》2005,44(17):6100-6110
We report the synthesis, characterization, and photophysical and electrochemical properties of a series of luminescent rhenium(I) diimine indole complexes, [Re(N-N)(CO)3(L)](CF3SO3) (N-N = 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4-phen), L = N-(3-pyridoyl)tryptamine (py-3-CONHC2H4-indole) (1a), N-[N-(3-pyridoyl)-6-aminohexanoyl]tryptamine, (py-3-CONHC5H10CONHC2H4-indole) (1b); N-N = 1,10-phenanthroline (phen), L = py-3-CONHC2H4-indole (2a), py-3-CONHC5H10CONHC2H4-indole (2b); N-N = 2,9-dimethyl-1,10-phenanthroline (Me2-phen), L = py-3-CONHC2H4-indole (3a), py-3-CONHC5H10CONHC2H4-indole (3b); N-N = 4,7-diphenyl-1,10-phenanthroline (Ph2-phen), L = py-3-CONHC2H4-indole (4a), py-3-CONHC5H10CONHC2H4-indole (4b)), and their indole-free counterparts, [Re(N-N)(CO)3(py-3-CONH-Et)](CF3SO3) (py-3-CONH-Et = N-ethyl-(3-pyridyl)formamide; N-N = Me4-phen (1c), phen (2c), Me2-phen (3c), Ph2-phen (4c)). The X-ray crystal structure of complex 3a has also been investigated. Upon irradiation, most of the complexes exhibited triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Re) --> pi*(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. However, the structural features and long emission lifetimes of the Me4-phen complexes in solutions at room temperature suggest that the excited state of these complexes exhibited substantial triplet intraligand (3IL) (pi --> pi*) (Me4-phen) character. The binding interactions of these complexes to indole-binding proteins including bovine serum albumin and tryptophanase have been examined.  相似文献   

12.
The crystal structures of the series of four ternary complexes, [Pd(phen)(2,6-PDCA)].4H(2)O (1) (phen=1,10-phenanthroline; 2,6-PDCA=2,6-pyridinedicarboxylic acid), [Pd(bpy)(2,3-PDCA)].3H(2)O (2) (bpy=2,2'-bipyridineand; 2,3-PDCA=2,3-pyridinedicarboxylic acid) and [Pd(phen)(PHT)].2.5H(2)O (3) (PHT=o-phthalic acid ) and [Pd(bpy)(PHT)].1.5H(2)O (4), are determined and the coordination modes of palladium(II) ternary complexes are characterized. All complexes take the mononuclear Pd(II) complexes, in which central Pd(II) atom of each complex has a similar distorted square-planar four coordination geometry. In all complexes, the aromatic heterocyclic compounds, phen and bpy, behave as a bidentate N, N' ligand. In the complex 1 and 2, 2,6-PDCA and 2,3-PDCA behave as a bidentate N, O ligand, and in complex 3 and 4, PHT behaves as a bidentate O, O' ligand.  相似文献   

13.
Complexes of the type Ru(phen)(2)L(2+), where L is a substituted bipyridine family member, have been prepared, and their photochemical substitution reactions have been investigated. In the presence of a bis-benzonitrile derivative, acting as a bidentate chelate, photoexpulsion of L is performed under the action of visible light, with quantitative formation of new complexes of the type Ru(phen)(2)L'(2+) (L' = bis-nitrile ligand). Several complexes have been characterized by X-ray crystallography. In particular, the bis-benzonitrile complexes could be crystallized, and the structure of these compounds, containing a 13-, 14-, or 15-membered metal incorporating ring, was obtained. By heating Ru(phen)(2)L'(2+) with a bipy derivative in refluxing ethylene glycol, quantitative formation of the starting complex [Ru(phen)(2)L(2+)] was carried out. The present series of compounds presents properties that could be profitably used in the design and construction of multicomponent systems acting as photochemically driven molecular machines.  相似文献   

14.
The reaction of 2,9-di(pyrid-2'-yl)-1,10-phenanthroline (dpp) with [RuCl(3)·3H(2)O] or [Ru(DMSO)(4)Cl(2)] provides the reagent trans-[Ru(II)(dpp)Cl(2)] in yields of 98 and 89%, respectively. This reagent reacts with monodentate ligands L to replace the two axial chlorides, affording reasonable yields of a ruthenium(II) complex with dpp bound tetradentate in the equatorial plane. The photophysical and electrochemical properties of the tetradentate complexes are strongly influenced by the axial ligands with electron-donating character to stabilize the ruthenium(III) state, shifting the metal-to-ligand charge-transfer absorption to lower energy and decreasing the oxidation potential. When the precursor trans-[Ru(II)(dpp)Cl(2)] reacts with a bidentate (2,2'-bipyridine), tridentate (2,2';6,2'-terpyridine), or tetradentate (itself) ligand, a peripheral pyridine on dpp is displaced such that dpp binds as a tridentate. This situation is illustrated by an X-ray analysis of [Ru(dpp)(bpy)Cl](PF(6)).  相似文献   

15.
Three copper(II)-rhenium(IV) bimetallic complexes of formula [ReCl(4)(mu-ox)Cu(phen)(2)] (1), [ReCl(4)(mu-ox)Cu(phen)(2)].CH(3)CN (2), and [ReCl(4)(mu-ox)Cu(terpy) (H(2)O)][ReCl(4)(mu-ox)Cu(terpy)(CH(3)CN)] (3) (ox = oxalate anion, phen = 1,10-phenanthroline, and terpy = 2,2':6,2"- terpyridine) have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. Complex 1 crystallizes in the triclinic system, space group P(-1), with a = 9.776(2), b = 11.744(3), c = 14.183(3) A, alpha =102.09(2) degrees, beta = 109.42(2) degrees, gamma = 107.11(2) degrees, and Z = 2, whereas 2 and 3 crystallize in the monoclinic system, space groups P2(1)/n and P2(1)/c, respectively, with a = 12.837(3), b = 17.761(4), c = 12.914(3) A, beta = 91.32(2) degrees, and Z = 4 for 2, and a = 8.930(2), b = 18.543(4), c = 27.503(6) A, beta = 94.67(2) degrees, and Z = 4 for 3. The structures of 1 and 2 are made up of neutral [ReCl(4)(mu-ox)Cu(phen)(2)] bimetallic units. Re(IV) and Cu(II) metal ions exhibit distorted octahedral coordination geometries, being bridged by a bis(bidentate) oxalato ligand. The presence of acetonitrile molecules of crystallization in 2 causes a somewhat greater separation between the bimetallic complexes and a different packing of these units in the crystal structure with respect to 1. The copper-rhenium separation across oxalato is 5.628(2) in 1 and 5.649(3) A in 2. The structure of 3 is made up of two different and neutral bimetallic units, [ReCl(4)(mu-ox)Cu(terpy)(H(2)O)] and [ReCl(4)(mu-ox)Cu(terpy)(CH(3)CN)]. In the first one, the oxalate group behaves as a bis(bidentate) ligand occupying one equatorial and one axial position in the elongated octahedral environment of Cu(II). The water molecule is axially coordinated. In the second one, the oxalate group behaves as a bidentate/monodentate ligand occupying the axial position in the square pyramidal environment of Cu(II). The acetonitrile molecule occupies a basal coordination position around the copper atom. These units are arranged in such a way that a chlorine atom of the first unit (Cl(1)) points toward the copper atom (Cu(2))of the second one (3.077(2) A for Cl(1)(.)Cu(2)), forming a tetranuclear species. The copper-rhenium separation across bis(didentate) oxalato is 5.504(3) A, whereas that through bidentate/monodentate oxalato is 5.436(2) A. The magnetic behavior of 2 and 3 has been investigated over the temperature range 1.8-300 K. A very weak and nearly identical antiferromagnetic coupling between Re(IV) and Cu(II) through bis(bidentate) oxalato occurs in 2 (J = -0.90 cm(-1)) and 3 (J = -0.83 cm(-1)); it is ferromagnetic in 3 through both the bidentate-monodentate oxalato (J = +5.60 cm(-1)) and the chloro (J = +0.70 cm(-1)) bridges.  相似文献   

16.
We report here the design of the first class of luminescent biotinylation reagents derived from rhenium(I) polypyridine complexes. These complexes [Re(N-N)(CO)(3)(py-biotin-NCS)](PF(6)) (py-biotin-NCS = 3-isothiocyanato-5-(N-((2-biotinamido)ethyl)aminocarbonyl)pyridine; N-N = 1,10-phenanthroline (phen) (1a), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me(4)-phen) (2a), 4,7-diphenyl-1,10-phenanthroline (Ph(2)-phen) (3a)), containing a biotin unit and an isothiocyanate moiety, have been synthesized from the precursor amine complexes [Re(N-N)(CO)(3)(py-biotin-NH(2))](PF(6)) (py-biotin-NH(2) = 3-amino-5-(N-((2-biotinamido)ethyl)aminocarbonyl)pyridine; N-N = phen (1c), Me(4)-phen (2c), Ph(2)-phen (3c)). To investigate the amine-specific reactivity of the isothiocyanate complexes 1a-3a, they have been reacted with a model substrate ethylamine, resulting in the formation of the thiourea complexes [Re(N-N)(CO)(3)(py-biotin-TU-Et)](PF(6)) (py-biotin-TU-Et = 3-ethylthioureidyl-5-(N-((2-biotinamido)ethyl)aminocarbonyl)pyridine; N-N = phen (1b), Me(4)-phen (2b), Ph(2)-phen (3b)). All the rhenium(I) complexes have been characterized, and their photophysical properties have been studied. The avidin-binding properties of the thiourea complexes 1b-3b have been examined by the 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assay. Titration results indicated that the complexes exhibited emission enhancement by ca. 1.4-1.5-fold upon binding to avidin, and the lifetimes were elongated to ca. 0.8-2.0 micros. Additionally, we have biotinylated bovine serum albumin (BSA) with the isothiocyanate complexes. All the resultant rhenium-BSA bioconjugates displayed intense and long-lived orange-yellow to greenish-yellow emission upon irradiation in aqueous buffer under ambient conditions. The avidin-binding properties of the bioconjugates have been investigated using the HABA assay. Furthermore, the cytotoxicity of the thiourea complexes 1b-3b toward the HeLa cells has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC50 values were determined to be ca. 17.5-28.5 microM, which are comparable to that of cisplatin (26.7 microM) under the same conditions. The cellular uptake of complex 3b has been investigated by fluorescence microscopy, and the results showed that the complex was localized in the perinuclear region after interiorization.  相似文献   

17.
The reactivity of amidinato complexes of molybdenum and tungsten bearing pyridine as a labile ligand, [M(eta(3)-allyl)(eta(2)-amidinato)(CO)(2)(pyridine)](M = Mo; 1-Mo, M = W; 1-W), toward bidentate ligands such as 1,10-phenanthroline (phen) and 1,2-bis(diphenylphosphino)ethane (dppe) was investigated. The reaction of 1 with phen at ambient temperature resulted in the formation of monodentate amidinato complexes, [M(eta(3)-allyl)(eta(1)-amidinato)(CO)(2)(eta(2)-phen)](M = Mo; 2-Mo, M = W; 2-W), which has pseudo-octahedral geometry with the amidinato ligand coordinated to the metal in an eta(1)-fashion. The phen ligand was located coplanar with two CO ligands and the eta(1)-amidinato ligand was positioned trans to the eta(3)-allyl ligand. In solution, both complexes 2-Mo and 2-W showed fluxionality, and complex 2-Mo afforded allylamidine (3) on heating in solution. In the reaction of 1 with dppe at ambient temperature, the simple substitution reaction took place to give dppe-bridged binuclear complexes [{M(eta(3)-allyl)(eta(2)-amidinato)(CO)(2)}(2)(mu-dppe)](M = Mo; 5-Mo, M = W; 5-W), whereas mononuclear monocarbonyl complexes [M(eta(3)-allyl)(eta(2)-amidinato)(CO)(eta(2)-dppe)](M = Mo; 6-Mo, M = W; 6-W) were obtained under acetonitrile- or toluene-refluxing conditions. Mononuclear complex 6 was also obtained by the reaction of binuclear complex 5 with 0.5 equivalents of dppe under refluxing in acetonitrile or in toluene. The X-ray analyses and variable-temperature (31)P NMR spectroscopy of complex 6 indicated the existence of the rotational isomers of the eta(3)-allyl ligand, i.e., endo and exo forms, with respect to the carbonyl ligand. The different reactivity of complex 1 toward phen and dppe seems to have come from the difference in the pi-acceptability of each bidentate ligand.  相似文献   

18.
Enantiopure dinuclear ruthenium polypyridyl complexes of the form [Ru(2)(LL)(4)L(1)](PF(6))(4) (LL = 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen); L(1)= C(25)H(20)N(4) a bis(pyridylimine) ligand containing a diphenylmethane spacer) have been synthesized using the chiral building blocks cis-[Ru(bpy)(2)(py)(2)](2+) and cis-[Ru(phen)(2)(py)(2)](2+). These dinuclear ruthenium complexes have been characterised using NMR, mass spectrometry, UV-visible absorbance, circular dichroism and linear dichroism. The compounds exhibit good photo and thermal stability. The extinction coefficient for the bpy complex at 478 nm is epsilon(478) = 15,700 mol(-1) cm(-1) dm(3) and for the phen complex is epsilon(478) = 24,900 mol(-1) cm(-1) dm(3). Both complexes have their longest wavelength (metal to ligand charge transfer) transition predominantly x/y (short axis)-polarised while the transitions at shorter wavelength are a mixture of x/y and z-polarisations, similar to both the copper helicate and iron triple helicate studied previously. Cytotoxicity studies reveal that the compounds are dramatically less active against cancer cell lines than the recently reported supramolecular cylinders prepared from the same bis(pyridylimine) ligand.  相似文献   

19.
Pt(pipNC)(2)(phen) [pipNC(-) = 1-(piperidylmethyl)phenyl anion; phen = 1,10-phenanthroline] was prepared by the reaction of cis-Pt(pipNC)(2) with phen. Crystallographic and (1)H NMR data establish that the phen ligand is bidentate, whereas each piperidyl ligand is monodentate and bonded to the platinum at the ortho position of the phenyl group. Acidic conditions allowed for isolation of the salts of diprotonated Pt(pipNHC)(2)(diimine)(2+) adducts (diimine = phen, 2,2'-bipyridine, or 5,5'-ditrifluoromethyl-2,2'-bipyridine). Crystallographic and spectroscopic data for the diprotonated complexes are consistent with H···Pt interactions (2.32-2.51 ?) involving the piperidinium groups, suggesting that the metal center behaves as a Br?nsted base. Metal-to-ligand (diimine) charge-transfer states of Pt(pipNHC)(2)(phen)(2+) in solution are strongly destabilized (>2500 cm(-1)) relative to Pt(pipNC)(2)(phen), in keeping with the notion that NH···Pt interactions effectively reduce the electron density at the metal center. Though N···Pt interactions in Pt(pipNC)(2)(phen) appear to be weaker than those found for outer-sphere two-electron reagents, such as Pt(pip(2)NCN)(tpy)(+) [pip(2)NCN(-) = 1,3-bis(piperidylmethylphenyl anion; tpy = 2,2':6',2'-terpyridine], each of the Pt(pipNC)(2)(diimine) complexes undergoes diimine ligand dissociation to give back cis-Pt(pipNC)(2) and free diimine ligand. Electrochemical measurements on the deprotonated complexes suggest that the piperidyl groups help to stabilize higher oxidation states of the metal center, whereas protonation of the piperidyl groups has a destabilizing influence.  相似文献   

20.
Lo KK  Chung CK  Lee TK  Lui LH  Tsang KH  Zhu N 《Inorganic chemistry》2003,42(21):6886-6897
We report the synthesis, characterization, and photophysical and electrochemical properties of thirty luminescent cyclometalated iridium(III) diimine complexes [Ir(N-C)(2)(N-N)](PF(6)) (HN-C = 2-phenylpyridine, Hppy; 2-(4-methylphenyl)pyridine, Hmppy; 3-methyl-1-phenylpyrazole, Hmppz; 7,8-benzoquinoline, Hbzq; 2-phenylquinoline, Hpq; N-N = 4-amino-2,2'-bipyridine, bpy-NH(2); 4-isothiocyanato-2,2'-bipyridine, bpy-ITC; 4-iodoacetamido-2,2'-bipyridine, bpy-IAA; 5-amino-1,10-phenanthroline, phen-NH(2); 5-isothiocyanato-1,10-phenanthroline, phen-ITC; 5-iodoacetamido-1,10-phenanthroline, phen-IAA). The X-ray crystal structure of [Ir(mppz)(2)(bpy-NH(2))](PF(6)) has also been investigated. Upon irradiation, all the complexes display intense and long-lived luminescence under ambient conditions and in 77-K glass. On the basis of the photophysical and electrochemical data, the emission of most of these complexes is assigned to an excited state of predominantly triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir) --> pi(N-N)) character. In some cases, triplet intraligand ((3)IL) (pi --> pi)(N-N or N-C(-)) excited states have also been identified. In view of the specific reactivity of the isothiocyanate and iodoacetamide moieties toward the primary amine and sulfhydryl groups, respectively, we have labeled various biological molecules with a selection of these luminescent iridium(III) complexes. The photophysical properties of the luminescent conjugates have been investigated. In addition, a heterogeneous assay for digoxin has also been designed on the basis of the recognition of biotinylated anti-digoxin by avidin labeled with one of the luminescent iridium(III) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号