首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many financial optimization problems involve future values of security prices, interest rates and exchange rates which are not known in advance, but can only be forecast or estimated. Several methodologies have therefore been proposed to handle the uncertainty in financial optimization problems. One such methodology is Robust Statistics, which addresses the problem of making estimates of the uncertain parameters that are insensitive to small variations. A different way to achieve robustness is provided by Robust Optimization, which looks for solutions that will achieve good objective function values for the realization of the uncertain parameters in given uncertainty sets. Robust Optimization thus offers a vehicle to incorporate an estimation of uncertain parameters into the decision making process. This is true, for example, in portfolio asset allocation. Starting with the robust counterparts of the classical mean-variance and minimum-variance portfolio optimization problems, in this paper we review several mathematical models, and related algorithmic approaches, that have recently been proposed to address uncertainty in portfolio asset allocation, focusing on Robust Optimization methodology. We also give an overview of some of the computational results that have been obtained with the described approaches. In addition we analyze the relationship between the concepts of robustness and convex risk measures.  相似文献   

2.
Robust Optimization (RO) is a modeling methodology, combined with computational tools, to process optimization problems in which the data are uncertain and is only known to belong to some uncertainty set. The paper surveys the main results of RO as applied to uncertain linear, conic quadratic and semidefinite programming. For these cases, computationally tractable robust counterparts of uncertain problems are explicitly obtained, or good approximations of these counterparts are proposed, making RO a useful tool for real-world applications. We discuss some of these applications, specifically: antenna design, truss topology design and stability analysis/synthesis in uncertain dynamic systems. We also describe a case study of 90 LPs from the NETLIB collection. The study reveals that the feasibility properties of the usual solutions of real world LPs can be severely affected by small perturbations of the data and that the RO methodology can be successfully used to overcome this phenomenon. Received: May 24, 2000 / Accepted: September 12, 2001?Published online February 14, 2002  相似文献   

3.
Many financial optimization problems involve future values of security prices, interest rates and exchange rates which are not known in advance, but can only be forecast or estimated. Several methodologies have therefore, been proposed to handle the uncertainty in financial optimization problems. One such methodology is Robust Statistics, which addresses the problem of making estimates of the uncertain parameters that are insensitive to small variations. A different way to achieve robustness is provided by Robust Optimization which, given optimization problems with uncertain parameters, looks for solutions that will achieve good objective function values for the realization of these parameters in given uncertainty sets. Robust Optimization thus offers a vehicle to incorporate an estimation of uncertain parameters into the decision making process. This is true, for example, in portfolio asset allocation. Starting with the robust counterparts of the classical mean-variance and minimum-variance portfolio optimization problems, in this paper we review several mathematical models, and related algorithmic approaches, that have recently been proposed to address uncertainty in portfolio asset allocation, focusing on Robust Optimization methodology. We also give an overview of some of the computational results that have been obtained with the described approaches. In addition we analyse the relationship between the concepts of robustness and convex risk measures.  相似文献   

4.
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. A robust strong duality theorem is given whenever the Lagrangian function is convex. We provide classes of uncertain non-convex programming problems for which robust strong duality holds under a constraint qualification. In particular, we show that robust strong duality is guaranteed for non-convex quadratic programming problems with a single quadratic constraint with the spectral norm uncertainty under a generalized Slater condition. Numerical examples are given to illustrate the nature of robust duality for uncertain nonlinear programming problems. We further show that robust duality continues to hold under a weakened convexity condition.  相似文献   

5.
Optimization models have been used to support decision making in the forest industry for a long time. However, several of those models are deterministic and do not address the variability that is present in some of the data. Robust Optimization is a methodology which can deal with the uncertainty or variability in optimization problems by computing a solution which is feasible for all possible scenarios of the data within a given uncertainty set. This paper presents the application of the Robust Optimization Methodology to a Sawmill Planning Problem. In the particular case of this problem, variability is assumed in the yield coefficients associated to the cutting patterns used. The main results show that the loss in the function objective value (the “Price of Robustness”), due to computing robust solutions, is not excessive. Moreover, the computed solutions remain feasible for a large proportion of randomly generated scenarios, and tend to preserve the structure of the nominal solution. We believe that these results provide an application area for Robust Optimization in which several source of uncertainty are present.  相似文献   

6.
In this paper we present a robust conjugate duality theory for convex programming problems in the face of data uncertainty within the framework of robust optimization, extending the powerful conjugate duality technique. We first establish robust strong duality between an uncertain primal parameterized convex programming model problem and its uncertain conjugate dual by proving strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem under a regularity condition. This regularity condition is not only sufficient for robust duality but also necessary for it whenever robust duality holds for every linear perturbation of the objective function of the primal model problem. More importantly, we show that robust strong duality always holds for partially finite convex programming problems under scenario data uncertainty and that the optimistic counterpart of the dual is a tractable finite dimensional problem. As an application, we also derive a robust conjugate duality theorem for support vector machines which are a class of important convex optimization models for classifying two labelled data sets. The support vector machine has emerged as a powerful modelling tool for machine learning problems of data classification that arise in many areas of application in information and computer sciences.  相似文献   

7.
Selected topics in robust convex optimization   总被引:1,自引:0,他引:1  
Robust Optimization is a rapidly developing methodology for handling optimization problems affected by non-stochastic “uncertain-but- bounded” data perturbations. In this paper, we overview several selected topics in this popular area, specifically, (1) recent extensions of the basic concept of robust counterpart of an optimization problem with uncertain data, (2) tractability of robust counterparts, (3) links between RO and traditional chance constrained settings of problems with stochastic data, and (4) a novel generic application of the RO methodology in Robust Linear Control.   相似文献   

8.
The robust optimization methodology is known as a popular method dealing with optimization problems with uncertain data and hard constraints. This methodology has been applied so far to various convex conic optimization problems where only their inequality constraints are subject to uncertainty. In this paper, the robust optimization methodology is applied to the general nonlinear programming (NLP) problem involving both uncertain inequality and equality constraints. The uncertainty set is defined by conic representable sets, the proposed uncertainty set is general enough to include many uncertainty sets, which have been used in literature, as special cases. The robust counterpart (RC) of the general NLP problem is approximated under this uncertainty set. It is shown that the resulting approximate RC of the general NLP problem is valid in a small neighborhood of the nominal value. Furthermore a rather general class of programming problems is posed that the robust counterparts of its problems can be derived exactly under the proposed uncertainty set. Our results show the applicability of robust optimization to a wider area of real applications and theoretical problems with more general uncertainty sets than those considered so far. The resulting robust counterparts which are traditional optimization problems make it possible to use existing algorithms of mathematical optimization to solve more complicated and general robust optimization problems.  相似文献   

9.
Robust design optimization (RDO) problems can generally be formulated by incorporating uncertainty into the corresponding deterministic problems. In this context, a careful formulation of deterministic equality constraints into the robust domain is necessary to avoid infeasible designs under uncertain conditions. The challenge of formulating equality constraints is compounded in multiobjective RDO problems. Modeling the tradeoffs between the mean of the performance and the variation of the performance for each design objective in a multiobjective RDO problem is itself a complex task. A judicious formulation of equality constraints adds to this complexity because additional tradeoffs are introduced between constraint satisfaction under uncertainty and multiobjective performance. Equality constraints under uncertainty in multiobjective problems can therefore pose a complicated decision making problem. In this paper, we provide a new problem formulation that can be used as an effective multiobjective decision making tool, with emphasis on equality constraints. We present two numerical examples to illustrate our theoretical developments.  相似文献   

10.
In this paper,we adopt the robust optimization method to consider linear complementarity problems in which the data is not specified exactly or is uncertain,and it is only known to belong to a prescribed uncertainty set.We propose the notion of the p- robust counterpart and the p-robust solution of uncertain linear complementarity problems.We discuss uncertain linear complementarity problems with three different uncertainty sets,respectively,including an unknown-but-bounded uncertainty set,an ellipsoidal uncertainty set and an intersection-of-ellipsoids uncertainty set,and present some sufficient and necessary(or sufficient) conditions which p- robust solutions satisfy.Some special cases are investigated in this paper.  相似文献   

11.
We consider a model for robust network design in telecommunications, in which we minimize the cost of the maximum mismatch between supply and demand. In the present study, the demand is uncertain and takes its values in a polytope defined by constraints. This problem is hardly tractable, so we limit ourselves to computing lower bounds (by a column-generation mechanism) and upper bounds (using an algorithm due to Falk and Soland for maximizing a separable convex function over a polytope). The experimental gap obtained turns out to be large, and this seems to be mainly due to poor upper bounds. Two possible solutions are suggested for further research aimed at improving them: dc optimization (to minimize the difference of two convex functions) and AARC modeling (affinely adjustable robust counterpart).  相似文献   

12.
Adjustable robust solutions of uncertain linear programs   总被引:9,自引:0,他引:9  
We consider linear programs with uncertain parameters, lying in some prescribed uncertainty set, where part of the variables must be determined before the realization of the uncertain parameters (``non-adjustable variables'), while the other part are variables that can be chosen after the realization (``adjustable variables'). We extend the Robust Optimization methodology ([1, 3-6, 9, 13, 14]) to this situation by introducing the Adjustable Robust Counterpart (ARC) associated with an LP of the above structure. Often the ARC is significantly less conservative than the usual Robust Counterpart (RC), however, in most cases the ARC is computationally intractable (NP-hard). This difficulty is addressed by restricting the adjustable variables to be affine functions of the uncertain data. The ensuing Affinely Adjustable Robust Counterpart (AARC) problem is then shown to be, in certain important cases, equivalent to a tractable optimization problem (typically an LP or a Semidefinite problem), and in other cases, having a tight approximation which is tractable. The AARC approach is illustrated by applying it to a multi-stage inventory management problem.Research was partially supported by the Israeli Ministry of Science grant #0200-1-98, the Israel Science Foundation founded by The Israel Academy of Sciences and Humanities, grant #683/99-10.0, and the Fund for Promotion of Research at the Technion.  相似文献   

13.
Optimal solutions of Linear Programming problems may become severely infeasible if the nominal data is slightly perturbed. We demonstrate this phenomenon by studying 90 LPs from the well-known NETLIB collection. We then apply the Robust Optimization methodology (Ben-Tal and Nemirovski [1–3]; El Ghaoui et al. [5, 6]) to produce “robust” solutions of the above LPs which are in a sense immuned against uncertainty. Surprisingly, for the NETLIB problems these robust solutions nearly lose nothing in optimality. Received: July 1999 / Accepted: May 2000?Published online July 20, 2000  相似文献   

14.
In our study, we integrate the data uncertainty of real-world models into our regulatory systems and robustify them. We newly introduce and analyse robust time-discrete target–environment regulatory systems under polyhedral uncertainty through robust optimization. Robust optimization has reached a great importance as a modelling framework for immunizing against parametric uncertainties and the integration of uncertain data is of considerable importance for the model’s reliability of a highly interconnected system. Then, we present a numerical example to demonstrate the efficiency of our new robust regression method for regulatory networks. The results indicate that our approach can successfully approximate the target–environment interaction, based on the expression values of all targets and environmental factors.  相似文献   

15.
The ellipsoid method and its consequences in combinatorial optimization   总被引:1,自引:0,他引:1  
L. G. Khachiyan recently published a polynomial algorithm to check feasibility of a system of linear inequalities. The method is an adaptation of an algorithm proposed by Shor for non-linear optimization problems. In this paper we show that the method also yields interesting results in combinatorial optimization. Thus it yields polynomial algorithms for vertex packing in perfect graphs; for the matching and matroid intersection problems; for optimum covering of directed cuts of a digraph; for the minimum value of a submodular set function; and for other important combinatorial problems. On the negative side, it yields a proof that weighted fractional chromatic number is NP-hard. Research by the third author was supported by the Netherlands Organisation for the Advancement of Pure Research (Z.W.O.).  相似文献   

16.
Robust optimization (RO) is a distribution-free worst-case solution methodology designed for uncertain maximization problems via a max-min approach considering a bounded uncertainty set. It yields a feasible solution over this set with a guaranteed worst-case value. As opposed to a previous conception that RO is conservative based on optimal value analysis, we argue that in practice the uncertain parameters rarely take simultaneously the values of the worst-case scenario, and thus introduce a new performance measure based on simulated average values. To this end, we apply the adjustable RO (AARC) to a single new product multi-period production planning problem under an uncertain and bounded demand so as to maximize the total profit. The demand for the product is assumed to follow a typical life-cycle pattern, whose length is typically hard to anticipate. We suggest a novel approach to predict the production plan’s profitable cycle length, already at the outset of the planning horizon. The AARC is an offline method that is employed online and adjusted to past realizations of the demand by a linear decision rule (LDR). We compare it to an alternative offline method, aiming at maximum expected profit, applying the same LDR. Although the AARC maximizes the profit against a worst-case demand scenario, our empirical results show that the average performance of both methods is very similar. Further, AARC consistently guarantees a worst profit over the entire uncertainty set, and its model’s size is considerably smaller and thus exhibit superior performance.  相似文献   

17.
In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ellipsoidal or intersection-of-two-ellipsoids uncertainty set leads to a complex semidefinite program. By exploring the approximate S-Lemma, we give a complex semidefinite program which approximates the NP-hard robust counterpart of complex convex quadratic optimization with intersection-of-ellipsoids uncertainty set.  相似文献   

18.
In this paper, we propose a new nonmonotone line search technique for unconstrained optimization problems. By using this new technique, we establish the global convergence under conditions weaker than those of the existed nonmonotone line search techniques.  相似文献   

19.
In this paper, we propose a distribution-free model instead of considering a particular distribution for multiple objective games with incomplete information. We assume that each player does not know the exact value of the uncertain payoff parameters, but only knows that they belong to an uncertainty set. In our model, the players use a robust optimization approach for each of their objective to contend with payoff uncertainty. To formulate such a game, named “robust multiple objective games” here, we introduce three kinds of robust equilibrium under different preference structures. Then, by using a scalarization method and an existing result on the solutions for the generalized quasi-vector equilibrium problems, we obtain the existence of these robust equilibria. Finally, we give an example to illustrate our model and the existence theorems. Our results are new and fill the gap in the game theory literature.  相似文献   

20.
Robust multi-echelon multi-period inventory control   总被引:2,自引:0,他引:2  
We consider the problem of minimizing the overall cost of a supply chain, over a possible long horizon, under demand uncertainly which is known only crudely. Under such circumstances, the method of choice is Robust Optimization, in particular the Affinely Adjustable Robust Counterpart (AARC) method which leads to tractable deterministic optimization problems. The latter is due to a recent re-parametrization technique for discrete time linear control systems. In this paper we model, analyze and test an extension of the AARC method known as the Globalized Robust Counterpart (GRC) in order to control inventories in serial supply chains. A simulation study demonstrates the merit of the methods employed here, in particular, it shows that a good control law that minimizes cost achieves simultaneously good control of the bullwhip effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号