首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, the interaction of three Li+-doped polycyclic hydrocarbons (Li+-DPH) with H2 and H2O was calculated to investigate the effect of curvature of substrate on the interaction energy (Eint). For this purpose, the Eint and its decomposed energy components (electrostatic (Eelec), exchange (Eexch), induction (Eind), and dispersion energy (Edisp)) were calculated using DF-SAPT (DFT) methodology for the selected systems (Li+-(3,3) carbon nanotube (Li+-CNT33), Li+-(6,6) carbon nanotube (Li+-CNT66), and Li+-graphene). According to the results, Eint does not change significantly with curvature for the interaction between both H2 and H2O gases and the selected Li+-DPH. Since the variation of the Eint with the curvature of Li+-DPH is not significant, the selection of a planar Li+-DPH is a trustworthy model to develop a general force field for describing the interaction between a Li+-DPH and adsorbed gases. The results reveal that, in the case of the H2, the components Eelect, Eexch, Eind, and Edisp have shown a decreasing trend with Li+-DPH’s curvature decrement. However, for the H2O, Eelect, Eexch, and Eind decrease from the Li+-CNT33 to the Li+-CNT66 while they increase from the Li+-CNT66 to the Li+-graphene. In this case, the Edisp increases with a decrease of the curvature of Li+-DPH. Finally, it can be seen that although the variation of the Eint with the curvature of Li+-DPH is not significant, the variation trend of the interaction energy components and the amount of variation depend on the gas molecule and in some cases are not negligible.  相似文献   

2.
Extraction of Li+ ions from salt lake brine into an ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) mixed with tri-n-butyl was investigated. The extraction mechanism was been studied using UV–Vis spectroscopy From the temperature dependence data, the thermodynamic functions values (ΔG°, ΔH°, and ΔS°) were calculated. Furthermore, stripping of metals from ionic liquid phase to an aqueous phase by hydrochloric acid was accomplished.  相似文献   

3.
The geometric parameters, normal vibration frequencies, and thermochemical characteristics of the ions present in vapor over sodium fluoride, Na2F+, Na3F 2 + , NaF 2 ? , and Na2F 3 ? , were calculated ab initio by the Hartree-Fock method and taking into account electron correlation. The main equilibrium configuration of all ions was found to be the linear configuration of D h symmetry. Pentaatomic ions could also exist as two isomers, planar cyclic of C 2v symmetry and bipyramidal of D 3h symmetry. Their energies were higher than that of the D h isomers, and their contents in vapor were negligibly low. The energies and enthalpies of dissociation of the ions with the elimination of the NaF molecule were calculated. The enthalpies of formation of the ions were obtained.  相似文献   

4.
The total limiting molar electrical conductivities of ions and triads of ions and the association constants of ions with the formation of ion pairs and triads of ions were calculated from the concentration dependences of the electrical conductivity of solutions of lithium and sodium perchlorates in tetrahydrofuran at 278.15–318.15 K with the use of the method specially developed earlier. The experimental total limiting electrical conductivities were used to calculate the limiting molar electrical conductivities and attraction friction factors of separate ions (Li+, Na+, ClO 4 ? , Li2ClO 4 + , Na2ClO 4 + , Li(ClO4) 2 ? , and Na(ClO4) 2 ? ). The constants of ion association into ion pairs were used to calculate the Gibbs energy of non-Coulomb interionic interaction (ΔG*+?), and the constants of association into triads of ions, to determine the a 3 distance parameter between the centers of the ion and the dipole of the ion pair. Positive ΔG*+?), values and deviations of the experimental a 3 value from the distance parameter calculated theoretically (a 3 0 ) for the triad of ions (Δa 3 = a 3 ? a 3 0 ) were related to non-Coulomb repulsion in the region of overlap of the solvation shells of ions and the influence of temperature and ion charge density on this repulsion.  相似文献   

5.
The additive tetraphenylarsonium-tetraphenylborate model of interactions was found to be applicable to the problem of “preexperimental” evaluation of the stability of associates formed by dye cations (Ct+) and anions (An?) in aqueous solutions. The possibility of predicting equilibrium association constants K as from preliminarily calculated ΔG(Ct+) and ΔG(An?) and of solving the inverse problem was analyzed. The invariability of the ΔG(Ct+) and ΔG(An?) values and the problem of bringing calculation results in consistency with the experimental K as values are discussed.  相似文献   

6.
The solvate shells of an ion, its velocity autocorrelation function, and diffusion coefficient D are found, and the interrelations between them are analyzed. A single ion in the system of atoms of a liquid is considered a model system. The interaction between the ion and atoms of the liquid is described by polarization potential U(r); the interaction between atoms of the liquid alone is described by the Lennard–Jones potential. A classical molecular dynamics method is used. Five solvate shells around the ion are found, and the lifetimes of atoms on each shell are calculated. It is found that the velocity autocorrelation function is of a vibrating nature. The spectrum of the autocorrelator and the frequency of cluster vibrations in a linear approximation are compared. Dependences D on parameters of potential U(r) are found. No dependence D on the ion mass is found; this is explained by solvation. The Einstein–Stokes formula and the HSK approximation are used in discussing the results. It is shown that at small radii of the ion, dependence D on parameters U(r) is described by such a model. When the ion radius is increased, the deviation from this dependence and an increase in D are observed. The results are compared to experimental mobilities of O2- and Ar2+ ions in liquid argon.  相似文献   

7.
The thermochemistry of the reaction of the microsolvated Na+ such as [Na(H2O) n ; n?=?1?6]+, [Na(NH3) n ; n?=?1?6]+ and [Na(H2O) n (NH3) m ; n?+?m?=?2?6]+ with thymine (Thy), as an example of a reaction in the microcosmic environment, have been studied in this work, theoretically. It was found that the increase of the number of solvent molecules in the structure of microsolvated Na+ is accompanied by the decrease of the standard enthalpy (\(\Delta H_{r}^{^\circ }\)) and Gibbs free (\(\Delta G_{r}^{^\circ }\)) energies of the reaction (Thy?+?[Na(X) n ]+→Thy-Na(X) n + ; X?=?solvent molecule). Also, the calculations showed that the electronic intermolecular interaction (?Eint) between the Thy and microslovated Na+ decreased with the increase of solvent molecules. For the interaction of the [Na(H2O) n ; n?=?4, 5 and 6]+ ions with the Thy, there was the probability of forming of the hydrogen bond between water molecules in the structure of solvated Na+ and the Thy. The gas phase infrared (IR) spectra of the complexes of the microsolvated Na+ with the Thy for different values of n were calculated and compared with each other to follow the change in the frequency of the stretching vibration of the interaction path between the C=O group of the Thy and Na (O…Na) with n. Using the calculated values of \(\Delta G_{r}^{^\circ }\) of the reactions, the mole fractions of the complexes of microsolvated Na+ ions with the Thy were calculated at different humidity.  相似文献   

8.
The behavior of the variable-composition spinel Li1 + x Mn2 ? x O4 is examined in repeated cycles consisting of lithiation in 0.2 M LiOH and delithiation in 0.3 M HNO3. For 0 < x < 0.33, delithiation is accompanied by the redox reaction 2Mn3+ → Mn4+ + Mn2+ and Li+ ? H+ ion exchange. The spinel undergoes partial conversion into λ-□MnO2. Vacancies (□) build up at the 8a sites of the spinel structure. Mn2+ ions pass into the solution, and, accordingly, the spinel dissolves. Lithiation is accompanied by the redox reaction 4Mn4+ → 3Mn3+ + Mn7+ and ion exchange, and the proportion of vacancies □ at the 8a sites of the spinel structure decreases. The spinel undergoes partial dissolution because of Mn2+ and MnO ? 4 ions passing into the solution. The Li+ selectivity of the spinel is the property of the crystallite core. The crystallite surface is capable of sorbing Na+ ions.  相似文献   

9.
An investigation is conducted on enhancing lithium-ion intercalation and conduction performance of transparent organo tantalum oxide (TaO y C z ) films, by addition of lithium via a fast co-synthesis onto 40 Ω/□ flexible polyethylene terephthalate/indium tin oxide substrates at the short exposed durations of 33–34 s, using an atmospheric pressure plasma jet (APPJ) at various mixed concentrations of tantalum ethoxide [Ta(OC2H5)5] and lithium tert-butoxide [(CH3)3COLi] precursors. Transparent organo-lithiated tantalum oxide (Li x TaO y C z ) films expose noteworthy Li+ ion intercalation and conduction performance for 200 cycles of reversible Li+ ion intercalation and deintercalation in a 1 M LiClO4-propylene carbonate electrolyte, by switching measurements with a potential sweep from ?1.25 to 1.25 V at a scan rate of 50 mV/s and a potential step at ?1.25 and 1.25 V, even after being bent 360° around a 2.5-cm diameter rod for 1000 cycles. The Li+ ionic diffusion coefficient and conductivity of 6.2?×?10?10 cm2/s and 6.0?×?10?11 S/cm for TaO y C z films are greatly progressed of up to 9.6?×?10?10 cm2/s and 7.8?×?10?9 S/cm for Li x TaO y C z films by co-synthesis with an APPJ.  相似文献   

10.
The first vertical electron affinities EA of 13 series of molecules and free radicals D(X i ) n are related to the inductive (σ I ), resonance (σ R ? ), and polarization (σα) parameters of substituents X i by the dependences EA = EA H + aΣσ I + bΣσ R/? + cΣσα: In radical anions D(X i ) n , compared to radical cations D(X i ) n , the polarization interaction is weaker or similar in magnitude but has an opposite sign. The previously unknown resonance parameters σ R ? of substituents SiMe3 and CH2SiMe3 bound to the radical anion center H2C=CH were calculated.  相似文献   

11.
The reduced partition function ratios between isotopic forms (β-factors) were calculated by the ab initio RHF/6-311++G**(3df, 3p) and MP2/6-311++G**(3df, 3p) quantum-chemical methods for hydrated chloride ion and ion pair hydrates NaCl·nH2O and LiOH · nH2O. The influence of the Na+ cation on the β-factor value and the chlorine isotope separation factor in the precipitation of NaCl from concentrated aqueous solutions was found to be substantial. At the same time, the presence of OH? counterions had no noticeable effect on the β-factor of the hydrated Li+ cation.  相似文献   

12.
The paper presents the results of a theoretical study of the dynamics of nonadiabatic transitions between the ion-pair states E0 g + and D0 u + of the I2 molecule induced by collisions with the I2 molecule in the ground electronic state X0 g + . The potential energy surfaces and diabatic coupling matrix elements of electronic states were obtained using a model based on the diatomics-in-molecule approximation. Special perturbation theory for intermolecular interaction was used to show that the large transition dipole moment between the E0 g + and D0 u + states caused the appearance of additional long-range corrections, an electrostatic dipole-quadrupole correction to the diabatic coupling matrix elements and induction dipole-dipole correction to the potential energy surface. The influence of these corrections on nonadiabatic dynamics was studied at the level of the semiclassical approximation. The electrostatic correction was found to sharply increase the contribution of resonance (accompanied by minimum kinetic energy changes) vibronic transitions at large distances between the colliding molecules. The induction correction had the opposite effect because of the high transition probability at short distances. The results obtained were in qualitative agreement with experimental data. The conclusion was drawn that obtaining quantitative agreement required a more balanced inclusion of interactions at short and long distances.  相似文献   

13.
The dehydrated form of (Li,Na)-substituted analcime, Li1.30Na0.53[Al1.83Si4.17O12], has been prepared and investigated with single crystal X-ray diffraction: a = 32.167(6) Å, b = 18.551(2) Å, c = 11.693(2) Å; β = 90.06(1)°, V = 6978(1) Å3, Z = 24, space group C2. The structure was analyzed through considering the aluminosilicate framework as a system of tubes composed from corrugated 6-membered rings joint by triples of tetrahedra. Volume decrease by 6.5% and trigonal distortion of the structure are explained by the localization of the non-framework cations in new unusual positions. On dehydration of Li, Na-analcime, 67% of Na+ and 20% of Li+ migrated from the standard M-positions at the periphery of the tubes into essentially different positions NaW and LiL situated on the axes of the tubes. Among the total of the fixed tube positions— 12NaW and 16LiL — one half is aggregated in the tubes parallel to [001] and has a planar three-fold coordination by framework O-atoms. The configuration and cation population of the tubes in other directions follow the motif of the “basic” system.  相似文献   

14.
The structural chemistry of lithium intermetallic compounds that are formed in Li–М binary systems where М = Ca, Sr, Ba, Mg, Zn, Cd, and Hg is surveyed. It is for the first time that the crystal structures of intermetallic compounds are classified in terms of polyhedral precursor metal clusters (in the program package ToposPro). The precursor metal clusters of crystal structures are identified using the algorithms of partitioning structural graphs into cluster structures and via the design of the basal 3D network of the structure in the form of a graph whose nodes correspond to the positions of the centers of precursor clusters. Tetrahedral precursor metal clusters M4 are identified for the crystal structures LiZn3-oC4, LiMg3-hP2, LiCd3-hP2, LiHg3-hP8, (LiMg3)(Li2Mg2)-tI16, Li2Zn2-cF16, Li2Cd2-cF16, Li2Hg2-cP2, Li3Cd-cF4, and Li3Hg-cF16; tetrahedral metal clusters M4 are found for the framework structures with spacer atoms Sr(Li2Sr2)-tP20, Ca2(Li4)-cF24, and Ca2(Li4)-cP12; tetrahedral metal clusters M4 and rings M6, for framework structures Ba3Li2(Li10)-hP30 and Ba3Li2(Li4In6)-hP30; icosahedral metal clusters M13 for the framework structure Li(Zn13)-cF112; bilayer tetrahedral metal clusters 0@М4@M22 for the framework structure Li23Sr6-cF116; and deltahedra М17 and deltahedra М30, for framework structures Sr4Li14 [Sr(Sr4Li12)] [(Sr2 (Sr8Li18)]-tI252 and Ba4Li14 [Ba(Ba4Li12)][(Ba2 (Ba8Li18)]-tI252. The scenario of crystal structure self-assembly from precursor metal clusters S30 in intermetallic compounds is reconstituted as: primary chain S31→ microlayer S32→ microframework S33.  相似文献   

15.
The present study is a comparative study of three equations, namely the Clausius–Clapeyron, Van’t Hoff and Hildebrand (to calculate crystal–liquid fugacity ratio (CLFR) of drug compounds), to select the best model in predicting the intestinal absorption and develop a new classification system based on dose number (D o) and CLFR. The required thermodynamic parameters [melting point, enthalpy of fusion (ΔH m) and the differential molar heat capacity (?C pm)] were experimentally obtained by differential scanning calorimetry. Pharmacokinetic data [the human intestinal absorption (F a) and apparent permeability of Caco-2 (P app _Caco-2)] and D o were obtained from the literature. The highest value of CLFR was found for diclofenac with the value of 88.78, 87.29, and 87.84 mol% from Clausius–Clapeyron, Van’t Hoff, and Hildebrand approaches, respectively. The lowest CLFR value was seen for memantine with the value of 14.3 × 10?17 and 26 × 10?12 mol% from Van’t Hoff and Hildebrand equations, respectively. Statistical comparison with the Wilcoxon signed rank test showed that the CLFR values calculated by three equations are different. CLFR values of more than 1 mol% correspond to the complete intestinal absorption (F a). There was a sigmoidal dependency between CLFR and F a, similar to the dependency between P app _Caco-2 and F a. In these modeling, the excellent correlations were obtained in all three models as evidenced by a good coefficient of determination (r 2 ) without a significant difference in the average absolute error. A new classification system from Hildebrand model based on D o and CLFR was developed and was in agreement with the biopharmaceutics classification system (70.5%) and the biopharmaceutical drug disposition system (65.6%). This modeling approach can be a valuable tool for scientists as an alternative for intestinal permeability in the biopharmaceutical classification system to develop new oral drugs. The CLFR obtained from Hildebrand model is also more convenient than the Clausius Clapeyron model, because the former does not need to calculate ?C pm (difficult step in calculating CLFR) for drug compounds. This new classification can help to develop the new drug product in industrial and academic research, without necessary in vivo experiments.  相似文献   

16.
By the DFT/B3LYP method the equilibrium structures of oxygen complexes with water are calculated in various geometric conformations with symmetries C 2v and C s . By the MRCI/CASSCF method potential energy surface cross-sections of the 1.3[O2–H2O] complexation reaction are constructed. With taking into account the spin-orbit coupling, the forbidden transition moments a 1Δ g X 3Σ g ?, b 1Σ g +a 1Δ g , c 1Σ u ?a 1Δ g , A 3Σ u +X 3Σ g ? of the complexes are calculated and changes in their intensities at different geometric configurations of the complex are revealed.  相似文献   

17.
A nickel(II) complex, [Ni(taetacn)](ClO4)2 ? H2O, where taetacn = 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane was synthesized. The crystal structure was determined by the single-crystal X-ray diffraction method at 293 K. The complex crystallizes in the orthorhombic space group Pna21 with a = 16.004(2) Å, b = 10.186(1) Å, c = 13.937(2) Å, V = 2271.9(5) Å3, Dx = 1.56 g cm?3, Dm = 1.59 g cm?3 (floatation method), and Z = 4. The R1 [I > 2σ(I)] and wR2 (all data) values are 0.0636 and 0.1672, respectively, for all 4845 independent reflections. The compound is composed of octahedral nickel(II) cation with three 2-aminoethyl pendant groups of taetacn, tetrahedral ClO 4 ? anion, and a water molecule of crystallization. Electronic spectra are consistent with the octahedral geometry. Temperature dependence of the magnetic susceptibility (4.5–300 K) can be interpreted considering the zero-field splitting of the nickel(II) ion (g = 2.14, D = 3.72 cm?1, and = 300 × 10?6 cm3 mol?1). Cyclic voltammetry in DMF showed quasi-reversible and irreversible oxidation waves (Epa = 0.54 V, Epc = 0.45 V; Epa = 1.16 V, Epc = 0.71 V vs. Ag/Ag+).  相似文献   

18.
Genetic algorithm combined with the semi-empirical Hamitonian AM1/PM3 is used to search the low energy isomers of Al n Si m (n = 3, 5, m ≤ 3 and n = 4, m ≤ 4) and the charged clusters with 20 and 28 valence electrons. The candidate structures were optimized by the density functional theory PBE0 and B3LYP models with the triply split basis sets including polarization functions. The electronic structures show that Al–Si binary clusters behave like metal clusters. The molecular orbitals accord with that predicted by the jellium model, and the electron localization function shows the valence electrons are delocalized over the entire clusters. The clusters having 20 and 28 valence electrons exhibit pronounced stabilities and large energy gaps. The 20 valence electrons of Al4Si2 and Al3Si3 +, Al5Si? form closed shells 1S 21P 62S 21D 10. Al4Si4 and Al5Si3 ? have oblate structures and the P, D, F levels spilt considerably in these clusters. The electron density distributions suggest that doping silicon in the aluminum clusters enhances the stability considerably.  相似文献   

19.
Orthorhombic LiMnO2 was synthesized by hydrothermal reaction. Phase transition during electrochemical process has been investigated using the high-resolution X-ray diffraction. Contrary to numerous earlier reports, phase analysis of the orthorhombic LiMnO2 electrode cycled for three times evidences the irreversible structure transition from orthorhombic LiMnO2 (Pmnm) to spinel LiMn2O4 (Fd3m) and rock salt Li0.5Mn0.5O (Fm \( \overline{3} \) m). Here, the spinel structure with a cell parameter a?=?8.241 (1) Å has a large cationic disorder on lithium and manganese sites, i.e., about 9% of the Li positions are occupied by Mn and vice versa. For Li0.5Mn0.5O, the cell parameter is a?=?4.121 (3) Å, and both Li+ and Mn3+ cations occupy the octahedral 4a sites with mole ratio 1:1. The quantity of Li0.5Mn0.5O phase is greatly dependent on cycling rate, namely, the higher the current density is, the larger the quantity of formed-rock salt structure is.  相似文献   

20.
The enthalpies of sublimation Δsub H 0(298) of 4f metal trichlorides were calculated by the second and third laws of thermodynamics from saturated vapor pressures using the thermodynamic functions of the condensed and gaseous states suggested by us. The set of the Δsub H o(298) enthalpies was analyzed to determine the most reliable values. The enthalpies of atomization found from these values were compared with those calculated from the measured equilibrium constants of gas phase reactions with the participation of the compounds under consideration and the enthalpies of atomization found from the experimental appearance potentials AP(Ln+/LnCl3). Recommended Δat H o(298) values were obtained for all the 4f metal trichlorides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号