首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high pressure differential thermal analysis apparatus is described which is capable of operation in the pressure range from 1-600 atm of nitrogen gas and at temperatures from 25 to 500°C. Use of the apparatus is illustrated by the deaquation reactions of CuCl2·2H20 and CoSO4·7H2O at pressures from 1 to 69 atm.  相似文献   

2.
A novel microthermogravimetric apparatus to study the kinetics of metal sulphur reactions and transport properties of transition metal sulphides has been described. The main feature of this arrangement includes the application of the carrier gas for sulphur vapour transportation and the protection of the balance chamber from sulphur attack. As a consequence, the helix balance could have been replaced by an automatic electronic microbalance and the accuracy of the mass change measurements increased more than two orders of magnitude, up to 10–7 g. The application of two liquid sulphur reservoirs created very stable, strictly defined reaction conditions, and enabled to make rapid changes of sulphur partial pressure in the reaction chamber. It has been demonstrated that all these innovations make it possible to study not only the kinetics of very slow sulphidation processes but also to determine deviations from stoichiometry and defect mobility in transition metal sulphides. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Sorption of carbon dioxide, ethylene, and nitrous oxide in poly(methyl methacrylate) (PMMA) at 35°C has been characterized for each gas as a pure component and for mixtures of carbon dioxide/ethylene and carbon dioxide/nitrous oxide. Pressures up to 20 atm were examined. Pure-component sorption isotherms are concave to the pressure axis for each of the gases. This behavior is accurately described by the dual-mode sorption model. Using only the purecomponent dual-mode parameters and the generalization of the model for gas mixtures, one can predict the total concentration of gas sorbed in the polymer to within an average deviation of ±2.01% for the CO2/C2H4/PMMA system and ±0.98% for the CO2/N2O/PMMA system. In both systems, for each component of the mixture, sorption levels were lower than corresponding pure-component sorption levels at pressures equal to the partial pressure of the respective components in the mixture. Depression of the sorbed concentration in mixture situations appears to be a general feature of the above systems and can be substantial in some situations. For the CO2/C2H4/PMMA system, use of pure-component sorption data to estimate the total sorbed concentration in the mixture would be in error by as much as 40% if one failed to account for competition phenomena responsible for depression in mixed-gas situations. Mixture pressures as high as 20 atm were studied for both systems and in the CO2/N2O/PMMA system sorbed concentrations reach 33.90 [cm3(STP)/cm3 polymer] without any significant deviation from model predictions.  相似文献   

4.
Diffusion and solubility coefficients have been determined for the CO2?, CH4?, C2H4?, and C3H8-polyethylene systems at temperatures of 5, 20, and 35°C and at gas pressures up to 40 atm. Diffusion coefficients were obtained from rates of gas absorption in polyethylene rods under isothermal-isobaric conditions by means of a new diffusivity apparatus. The concentration dependence of the diffusion coefficients was represented satisfactorily by Fujita's free-volume model, modified for semicrystalline polymers, while the solubility of all the penetrants in polyethylene was within the limit of Henry's law. Semiempirical correlations were found for the free-volume parameters in terms of physicochemical properties of the penetrant gases and the penetrant-polymer systems. These correlations, if confirmed, should permit the prediction of diffusion and permeability coefficients of other gases and of gas mixtures in polyethylene as functions of pressure and temperature.  相似文献   

5.
The high-temperature oxidation behavior of a ferritic alloy (SUS 430) in a SOFC environment, corresponding to the anode (H2/H2O gas mixture) and cathode (air) operating conditions, was determined with regard to application of the alloy as a metallic separator material in SOFC. The oxidation kinetics of Fe-16Cr alloy (SUS 430), was studied by thermogravimetry in H2/H2O gas mixtures with pH/pHO=94/6 and 97/3 and in air, in the temperature range 1023-1223 K, for 3.6 up to 1080 ks. It was found that the protective oxide scale, composed mainly of Cr2O3 with uniform thickness and excellent adhesion to the metal substrate, grows in accordance with the parabolic rate law. The dependence of the parabolic rate constant, kp, of the scale on temperature obeys the Arrhenius equation: kp=6.8×10-4 exp (-202.3 kJ mol-1R-1T-1) for H2/H2O gas mixtures with pH/pHO=94/6. The determined kp was independent of the oxygen partial pressure in the range from 5.2×10-22 to 0.21 atm at 1073 K, which means that the rates of growth of the scale on Fe-16Cr alloy in the above-mentioned atmospheres are comparable. The oxidation test results on Fe-16Cr alloy in H2/H2O gas mixtures and air demonstrate the applicability of SUS 430 alloys as a separator for SOFC. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The objective of this study was to synthesize rubbery polymers with a high H2S/CH4 selectivity for possible use as membrane materials for the separation of H2S from ‘low-quality’ natural gas. Two poly(ether urethanes), designated hereafter PU1 and PU3, and two poly(ether urethane ureas), designated PU2 and PU4, were synthesized and cast in the form of ‘dense’ (homogeneous) membranes. PU1 and PU2 contained poly(propylene oxide) whereas PU3 and PU4 contained poly(ethylene oxide) as the polyether component. The permeability of these membranes to two ternary mixtures of CH4, CO2, and H2S was measured at 35°C, and for a PU4 membrane also at 20°C, in the pressure range from 4 to 13.6 atm (4.05–13.78×105 Pa). PU4 is a very promising membrane material for H2S separation from mixtures with CH4 and CO2, having a H2S/CH4 selectivity greater than 100 at 20°C as well as a very high permeability to H2S. Permeability measurements were also made with commercial PEBAXTM membranes for comparison. The possibility of upgrading low-quality natural gas to US pipeline specifications for H2S and CO2 by means of membrane processes utilizing both highly H2S-selective and CO2-selective polymer membranes is discussed.  相似文献   

7.
The delay time τ has been measured for the formation of the ·OH radical in igniting hydrogenoxygen mixtures diluted with argon (79–97%). The experiments have been carried out under incident shock wave conditions at temperatures of 900–3000 K, pressures of 0.5–2.5 atm, and H2/O2 ratios of 0.2–20. The dependence of τ on the pressure P s of the stoichiometric part of the combustible mixture (2H2-O2) has been investigated for different mixture compositions. Under the above conditions, τ depends practically linearly on 1/P s at P s = 0.02−0.1 atm, irrespective of the mixture composition. This allows the measured τ data to be converted to one quantity, τP s. The temperature dependence of τP s in the P s range from 0.02 to 0.1 atm is Arrhenius-like. For the hydrogen-rich mixtures (H2/O2 = 2–20), this dependence appears as τP s= 0.057 + 0.0256exp(7470/T) μs atm; for the lean mixtures (H2/O2 = 0.125–1), τP s = 0.021 + 0.0069exp(7470/T) μs atm. The length of the shock-heated gas plug in the incident shock wave poses limitations on the ignition delay time measurements at T < 900 K.  相似文献   

8.
A high pressure differential thermal analysis apparatus is described which is capable of operation in the pressure range from 1–680 atm of hydrogen at temperatures from 20 to 900°C. This system has been used to investigate the LaNi5H2 system from 1–200 atm.  相似文献   

9.
The kinetic isotope effect (KIE) for carbon and oxygen in the reaction CO + OH has been measured over a range of pressures of air and at 0.2 and 1.0 atm of oxygen, argon, and helium. The reaction was carried out with 21–86% conversion under static conditions, utilizing the photolysis of H2O2 as a source of OH radicals. The value of the KIE for carbon varies with pressure and the kind of ambient gas; for air the ratio of the reaction rates 12k/13k has the value 1.007 at 1.00 atm and decreases to 0.997 at 0.2 atm; for oxygen and argon over the same pressure range the values are 1.002–0.994 and 1.000–0.991, respectively. The value of the KIE for the CO oxygen atom is 16k/18k = 0.990 over the pressure range 0.2–1.0 atm and is independent of the kind of ambient gas. No exchange of the oxygen atoms in the activated complex, followed by decomposition to the starting molecules, was observed. From the mechanistic standpoint the normal KIE observed for carbon at the high pressure is attributed to the initial formation of the activated HOCO radical, whereas the inverse KIE observed at low pressures is a result of the KIE for the reverse reaction HOCO? → CO + OH being greater than that for the forward reaction HOCO? → CO2 + H. The derived isotopic equilibrium constant for HOCO ?CO favors the enrichment of 13C in the more strongly bound HOCO.  相似文献   

10.
The thermomechanical and electrical conductivity properties of praseodymium molybdate Pr5Mo3O16 + δ prepared by a solid-phase method were studied. The electrical conductivity of praseodymium molybdate samples measured at temperatures in the range 373–1173 K with the oxygen partial pressure in the gas of 10–3 to 0.21 atm was found to increase from ~10–7 to ~10–2 S/cm and to be almost independent of oxygen pressure. It is for the first time that electrical conductivity a reductive atmosphere (Ar/H2 5%) was found to increase from 0.1 to 1.2 S/cm in the same temperature range. Studies of the chemical stability of Pr5Mo3O16 + δ with respect to solid electrolytes showed the absence of chemical reactions with GDC at 1273 K and with YSZ at 1223 K. The combination of these properties evidences for the potential of praseodymium molybdate for use as an anode material for solid oxide fuel cells (SOFCs).  相似文献   

11.
A dynamic column breakthrough (DCB) apparatus was used to measure the capacity and kinetics of CH4 and N2 adsorption on zeolite H+-mordenite at temperatures in the range 243.8–302.9 K and pressures up to 903 kPa. Equilibrium adsorption capacities of pure CH4 and pure N2 were determined by these dynamic experiments and Langmuir isotherm models were regressed to these pure fluid data over the ranges of temperature and pressure measured. A linear driving force-based model of adsorption in a fixed bed was developed to extract the mass transfer coefficients (MTCs) for CH4 and N2 from the pure gas experimental data. The MTCs determined from single adsorbate experiments were used to successfully predict the component breakthroughs for experiments with equimolar CH4 + N2 gas mixtures in the DCB apparatus. The MTC of CH4 on H+-mordenite at 902 kPa was 0.013 s?1 at 302.9 K and 0.004 s?1 at 243.6 K. The MTC of N2 on H+-mordenite at 902 kPa was 0.011 s?1 at 302.9 K and 0.005 s?1 at 243.5 K. The values of the MTCs measured for each gas at a constant feed gas flow rate were observed to increase in a linear trend with the inverse of pressure. However, the apparent MTCs obtained at the lowest pressures studied (≈105 kPa) were systematically below this linear trend, because of the slightly longer residence time of helium in the mass spectrometer used to monitor effluent composition. Nevertheless, the pure fluid dynamic breakthrough data at these lowest pressures could still be reasonably well described using MTC values estimated from the linear trend. Furthermore, the results of dynamic breakthrough experiments with mixtures were all reliably predicted using the capacity and MTC correlations developed for the pure fluids.  相似文献   

12.
A high pressure electrical conductivity (EC) apparatus. capable of operation at pressures from 1 to 170 atm in the temperature range from 25 to 500°C, is described. The effects of the sample holder geometry, pressure, and sample packing on the resulting EC curves are given. Operation of the apparatus is illustrated by the deaquation reactions of BaCI2·2H20.  相似文献   

13.
To determine the composition of niobium–rare-earth ores by atomic emission spectrometry and inductively coupled plasma mass spectrometry, two procedures are developed for sample preparation based on autoclave decomposition and flux fusion. Autoclave decomposition is carried out in a mixture of HF and HNO3 at a temperature of up to 220°C and a pressure of up to 160 atm using a developed system with resistive heating. Subsequent evaporation to dry salts ensures the removal of F ions and silicon as SiF4. The residue is dissolved in a mixture of HCl and H2O2 at 160°C under elevated pressure. The resulting solutions (10% with respect to HCl with the addition of H2O2) are diluted before measurements. The dissolution process is monitored for each sample using stable highly enriched isotopes of 91Zr, 100Mo, 149Sm, and 178Hf. The second procedure is based on fusing samples with a mixture of Na2CO3 and Na2B4O7 at 1050°C in a muffle furnace and dissolving the resulting melt in a mixture of HCl and H2O2. The procedures were tested using the national (NFS-23) and foreign standard samples of composition (OREAS-462, 463, 464, 465, Australia) and real samples of niobium–rare-earth ores.  相似文献   

14.
Glass transition in the system poly(methyl methacrylate)/compressed gas was studied as a function of the gas pressure p using a high-pressure Tian-Calvet heat flow calorimeter. Measurements were made on PMMA-CH4-C2H4, and ;-CO2 at pressures to 200 atm. All three gases plasticize the polymer leading to depression of the glass transition temperature Tg. Trends in the Tg depression were the same as those reported for the solubility of these gases in PMMA; the higher the solubility the larger the depression in Tg. CO2 was found to be the most effective plasticizer producing a depression of about 40°C at a pressure of about 37 atm. In the low-pressure limit, the pressure coefficient of the glass transition temperature (dTg/dp) was found to be about −0.2°C atm-1 for PMMA-CH4, the same as that observed for polystyrene-CH4. For PMMA-C2H4, the pressure coefficient was −0.7°C atm-1, which is lower than the value of −0.9°C atm-1 observed for PS-C2H4. The pressure coefficient for PMMA-CO2 was found to be about −1.2°C atm-1, which is larger than the value of −0.9°C atm-1 observed for PS-CO2. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Ethane oxidation in jet-stirred reactor has recently been investigated at high temperature (800–1200 K) in the pressure range 1–10 atm and molecular species (H2, CO, CO2, CH4, C2H2, C2H4, C2H6) concentration profiles were obtained by probe sampling and GC analysis. Ethane oxidation was modeled using a comprehensive kinetic reaction mechanism including the most recent findings concerning the kinetics of the reactions involved in the oxidation of C1? C4 hydrocarbons. The proposed mechanism is able to reproduce experimental data obtained in our high-pressure jet stirred reactor and ignition delay times measured in shock tube in the pressure range 1–13 atm, for temperatures extending from 800 to 2000 K and equivalence ratios of 0.1 to 2. It is also able to reproduce atoms concentrations (H,O) measured in shock tube at ≈2 atm. The same detailed kinetic mechanism can also be used to model the oxidation of methane, ethylene, propyne, and allene in similar conditions.  相似文献   

16.
An IR laser absorption diagnostic has been further developed for accurate and sensitive time‐resolved measurements of ethylene in shock tube kinetic experiments. The diagnostic utilizes the P14 line of a tunable CO2 gas laser at 10.532 μm (the (0 0 1) → (1 0 0) vibrational band) and achieves improved signal‐to‐noise ratio by using IR photovoltaic detectors and accurate identification of the P14 line via an MIR wavemeter. Ethylene absorption cross sections were measured over 643–1959 K and 0.3–18.6 atm behind both incident and reflected shock waves, showing evident exponential decay with temperature. Very weak pressure dependence was observed over the pressure range of 1.2–18.6 atm. By measuring ethylene decomposition time histories at high‐temperature conditions (1519–1895 K, 2.0–2.8 atm) behind reflected shocks, the rate coefficient of the dominant elementary reaction C2H4 + M → C2H2 + H2 + M was determined to be k1 = (2.6 ± 0.5) × 1016exp(?34,130/T, K) cm3 mol?1 s?1 with low data scatter. Ethylene concentration time histories were also measured during the oxidation of 0.5% C2H4/O2/Ar mixtures varying in equivalence ratio from 0.25 to 2. Initial reflected shock conditions ranged from 1267 to 1440 K and 2.95 to 3.45 atm. The measured time histories were compared to the modeled predictions of four ethylene oxidation mechanisms, showing excellent agreement with the Ranzi et al. mechanism (updated in 2011). This diagnostic scheme provides a promising tool for the study and validation of detailed hydrocarbon pyrolysis and oxidation mechanisms of fuel surrogates and realistic fuels. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 423–432, 2012  相似文献   

17.
The complete bond migration of the internal olefinic bond of trans-1,4-bis(methythio)hexafluoro-2-butene(I) under high pressure to the terminal olefinic bond to form cis- and trans-1,4-bis(methylthio)hexafluoro-1-butene(II) is described. The Teflon-lined high pressure cell maintains a constant pressure at 16,000 atm and 180 to 200°C for 24 hours. The cis- and trans-II are elucidated from gas chromatography-mass spectroscopy, which shows two identical parent ions at m/e value of 255(C6H6F6S2+), but at different elution times. The 19FNMR data of the isomeric products are summarized. Elemental analysis of II is verified by double focussing high resolution mass spectrometer.  相似文献   

18.
The photolysis of iodine has been studied in the gas phase using laser flash photolysis at 6943 A. The dependence of the quantum yield on the pressure has been investigated in the range 0.1–1000 atm for several inert gases. For Kr, Xe, O2, CO2, CH4, C2H6 and C3H8 a decrease of the quantum yield with increasing pressure was obtained; for He, Ne, Ar and H2 no effect could be observed. These results may correspond to a photolycitc cage effect of iodine in the gas phase analogous to that known from the liquid phase.  相似文献   

19.
The formation and characteristics of the hydride of ZrCrFeTx (T = Mn, Fe, Co, Ni, or Cu and x = 0.8) were studied at various temperatures and in the pressure range up to ~60 atm. The hydrogen vapor pressure of the ZrCrFeH system is raised approximately 10- to 400-fold by the addition of excess d-element or Cu to the ZrCrFe lattice. The equilibrium vapor pressure of ZrCrFeCo0.8H is unusually high relative to the other quaternary systems and is consistent with the observed unit cell dimensions. This pronounced effect suggests that the Co has a striking influence on the ZrCrFe band structure. The enthalpy and entropy of dehydrogenation, ranging between 19.4 and 32 kJ(mole H2)?1 and 77.2 and 100 J(kmole H2)?1, are significantly lower than that of the ZrCrFeH. The high effective entropies of the hydride (high configurational entropy of H in the lattice) is attributed to extensive hydrogen disorder in the ZrCrFeT0.8 lattice. The kinetics of hydride formation and decomposition are extremely fast. The favorable thermodynamic features and rapid kinetics make these substances rather attractive for practical applications.  相似文献   

20.
The primary quantum yield of H-atom production in the pulsed-laser photolysis of hydrazine vapor, N2H4 + hν → H + N2H3, was measured to be (1.01 ± 0.12) at 193 nm relative to HBr photolysis, and (1.06 ± 0.16) at 222 nm relative to 248-nm N2H4 photolysis, in excess He buffer gas at 296 K. The H-atoms were directly monitored in the photolysis by cw-resonance fluorescence detection of H(2S) at 121.6 nm. The high H-atom yield observed in the photolysis is consistent with the continuous ultraviolet absorption spectrum of N2H4 involving unit dissociation of the diamine from repulsive excited singlet state(s). The laser photodissociation of N2H4 was thus used as a ‘clean’ source of H-atoms in excess N2H4 and He buffer gas to study the gas-phase reaction, H + N2H4 → products; (k1), in a thermostated photolysis reactor made of quartz or Pyrex. The pseudo-first-order temporal profiles of [H] decay immediately after photolysis were determined for a range of different hydrazine concentrations employed in the experiments to calculate the absolute second-order reaction rate coefficient, k1. The Arrhenius expression was determined to be k1 = (11.7 ± 0.7) × 10?12 exp[?(1260 ± 20)/T] cm3 molec?1 s?1 in the temperature range 222–657 K. The rate coefficient at room temperature was, within experimental errors, independent of the He buffer gas pressure in the range 24.5–603 torr. The above temperature dependence of k1 is in excellent agreement to that we determine in our discharge flow-tube apparatus in the temperature range 372–252 K and in 9.5 torr of He pressure. The Arrhenius parameters we report are consistent with a metathesis reaction mechanism involving the abstraction of hydrogen from N2H4 by the H-atom. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号