首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution of droplets in a plane Hagen-Poiseuille flow of dilute suspensions has been measured by a special LDA technique. This method assumes a well defined relation between the velocity of the droplets and their lateral position in the channel. The measurements have shown that the droplet distribution is non-uniform and depends on the viscosity ratio between the droplets and the carrier liquid. The results have been compared with a theory by Chan and Leal describing the lateral migration of suspended droplets.List of symbols a particle radius, m - d half width of the channel, m - Re flow Reynolds number, = 2 m · d · /µ - flow velocity, m/s - m flow velocity at the channel axis, m/s - We Weber number, = 2 m Emphasis>/2 · d · / - x distance from center line (x = 0) of the channel, m - non-dimensional distance from the channel center line, x d - y distance along the channel (y = 0 at channel inlet), m - non-dimensional distance along the channel, = y/2d - non-dimensional, normalized distance along the channel, = · m · µ/ - interfacial tension, N/m - viscosity ratio of dispersed (droplet) phase to viscosity of continuous phase - µ viscosity of continuous phase, Pa · s - density of continuous phase, kg/m3 - phase density difference, kg/m3 Experiments were performed at Max-Planck-Institut, Göttingen  相似文献   

2.
A new method for describing the rheological properties of reactive polymer melts, which was presented in an earlier paper, is developed in more detail. In particular, a detailed derivation of the equation of a first-order rheometrical flow surface is given and a procedure for determining parameters and functions occurring in this equation is proposed. The experimental verification of the presented approach was carried out using our data for polyamide-6.Notation E Dimensionless reduced viscosity, eq. (34) - E 0 Newtonian asymptote of the function (36) - E power-law asymptote of the function (36) - E = 1 the value ofE at = 1 - k degradation reaction rate constant, s–1 - k 1 rate constant of function (t), eq. (26), s–1 - k 2 rate constant of function (t), eq. (29), s–1 - K(t) residence-time-dependent consistency factor, eq. (22) - M w weight-average molecular weight - M x x-th moment of the molecular weight distribution - R gas constant - S x M x /M w - t residence time in molten state, s - t j thej-th value oft, s - T temperature, K - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xd9vqpe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-xir-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaceWFZo% Gbaiaaaaa!3B4E!\[\dot \gamma \] shear rate, s–1 - i thei-th value of , s–1 - r =1 the value of at = 1, s–1 - * reduced shear rate, eq. (44), s–1 - dimensionless reduced shear rate, eq. (35) - viscosity, Pa · s - shear-rate and residence-time dependent viscosity, Pa · s - zero-shear-rate degradation curve - degradation curve at - t0 (t) zero-residence-time flow curve - Newtonian asymptote of the RFS - instantaneous flow curve - power-law asymptote of the RFS - 0,0 zero-shear-rate and zero-residence-time viscosity, Pa · s - E=1 value of viscosity atE=1, Pa · s - * reduced viscosity, eq. (43), Pa · s - zero-residence-time rheological time constant, s - density, kg/m3 - (t),(t) residence time functions  相似文献   

3.
Summary A study is made of the attenuation of pressure surges in a two-dimension a channel carrying a viscous liquid when a valve at the downstream end is suddenly closed. The analysis differs from previous work in this area by taking into account the transient nature of the wall shear, which in the past has been assumed as equivalent to that existing in steady flow. For large values of the frictional resistance parameter the transient wall shear analysis results in less attenuation than given by the steady wall shear assumption.Nomenclature c /, ft/sec - e base of natural logarithms - F(x, y) integration function, equation (38) - (x) mean value of F(x, y) - g local acceleration of gravity, ft/sec2 - h width of conduit, ft - k (2m–1)2 2 L/h 2 c, equation (35) - k* 12L/h 2 c, frictional resistance parameter, equation (46) - L length of conduit, ft - m positive integer - n positive integer - p pressure, lb/ft2 - p 0 constant pressure at inlet of conduit, lb/ft2 - P pressure plus elevation head, p+gz, equation (4) - mean value of P over the conduit width h - P 0 p 0+gz 0, lbs/ft2 - R frictional resistance coefficient for steady state wall shear, lb sec/ft4 - s positive integer; also, condensation, equation (6) - t time, sec - t ct/L, dimensionless time - u x component of fluid velocity, ft/sec - u m mean velocity in conduit, equation (12), ft/sec - u 0(y) velocity profile in Poiseuille flow, equation (19), ft/sec - transformed velocity - U initial mean velocity in conduit - x distance along conduit, measured from valve (fig. 1), ft - x x/L, dimensionless distance - y distance normal to conduit wall (fig. 1), ft - y y/h, equation (25) - z elevation, measured from arbitrary datum, ft - z 0 elevation of constant pressure source, ft - isothermal bulk compression modulus, lbs/ft2 - n , equation (37) - n (2n–1)/2, equation (36) - viscosity, slugs/ft sec - / = kinematic viscosity, ft2/sec - density of fluid, slugs/ft3 - 0 density of undisturbed fluid, slugs/ft3 - ø angle between conduit and vertical (fig. 1) The research upon which this paper is based was supported by a grant from the National Science Foundation.  相似文献   

4.
A three-dimensional, time-resolved, laser-induced fluorescence (3D-LIF) technique was developed to measure the turbulent (liquid-liquid) mixing of a conserved passive scalar in the wake of an injector inserted perpendicularly into a tubular reactor with Re=4,000. In this technique, a horizontal laser sheet was traversed in its normal direction through the measurement section. Three-dimensional scalar fields were reconstructed from the 2D images captured at consecutive, closely spaced levels by means of a high-speed CCD camera. The ultimate goal of the measurements was to assess the downstream development of the 3D scalar fields (in terms of the full scalar gradient vector field and its associated scalar energy dissipation rate) in an industrial flow with significant advection velocity. As a result of this advection velocity, the measured 3D scalar field is artificially skewed during a scan period. A method to correct for this skewing was developed, tested and applied. Analysis of the results show consistent physical behaviour.List of symbols  A  Deformation tensor - Dt, Df  Reactor and injector diameter - Lx, Ly, Lz  Dimensions of the 3D-LIF measurement volume - Nx, Ny, Nz  Number of data samples per measurement volume - Rem  Reynolds number based on mean velocity - Sc  Schmidt number - f  Focal length - fc,lens, fc,array  Cut-off frequency for camera lens and sensor array - f, f  Marginal probability density function for and - f  Joint probability density function of and -  Temporal separation of the 2D data planes -  Temporal resolution of the measurement volume -  Spatial resolution of the measurement volume - ,  Deformation angle and deformation, where =tan -  Fluid energy dissipation rate - ,  Strain limited vorticity and scalar diffusion layers -  Scalar concentration - , B Kolmogorov and Batchelor length scale - ,  Spherical angles of the scalar gradient vector, -  Kinematic viscosity - e–2 Half-thickness (1/e2) of the laser sheet - , a Kolmogorov and Kolmogorov advection time scales -  Scalar energy dissipation rate -  Scalar diffusivity - 2D, 3D Two- and three-dimensional - DNS Direct numerical simulation - LIF Laser-induced fluorescence - SED Scalar energy dissipation rate - TR Tubular reactor
E. Van VlietEmail:
  相似文献   

5.
Zusammenfassung Der Einfluß der Rotation auf das Temperaturprofil und die Wärmeübergangszahl einer turbulenten Rohrströmung im Bereich des thermischen Einlaufs wird theoretisch untersucht und mit Meßwerten verglichen. Es wird angenommen, daß das Geschwindigkeitsprofil voll ausgebildet ist. Die Rotation hat aufgrund der radial ansteigenden Zentrifugalkräfte einen ausgeprägten Einfluß auf die Unterdrückung der turbulenten Bewegung. Dadurch verschlechtert sich die Wärmeübertragung mit steigender Rotations-Reynoldszahl und die thermische Einlauflänge nimmt beträchtlich zu.
Heat transfer in an axially rotating pipe in the thermal entrance region. Part 1: Effect of rotation on turbulent pipe flow
The effects of rotation on the temperature distribution and the heat transfer to a fluid flowing inside a tube are examined by analysis in the thermal entrance region. The theoretical results are compared with experimental findings. The flow is assumed to have a fully developed velocity profile. Rotation was found to have a very marked influence on the suppression of the turbulent motion because of radially growing centrifugal forces. Therefore, a remarkable decrease in heat transfer with increasing rotational Reynolds number can be observed. The thermal entrance length increases remarkably with growing rotational Reynolds number.

Formelzeichen a Temperaturleitzahl - C n , ,C 1,C 3 Konstanten - c p spezifische Wärme bei konstantem Druck - D Rohrdurchmesser - E Funktion nach Gl. (30) - H n Eigenfunktionen - l hydrodynamischer Mischungsweg - l q thermischer Mischungsweg - Massenstrom - N=Re /Re Reynoldszahlenverhältnis - Nu Nusseltzahl - Nu Nusseltzahl für die thermisch voll ausgebildete Strömung - Pr Prandtlzahl - Pr t turbulente Prandtlzahl - Wärmestromdichte - Re * Schubspannungsreynoldszahl - R n Eigenfunktionen - Durchfluß-Reynoldszahl - Re v =D/ Rotations-Reynoldszahl - Ri Richardsonzahl - R Rohrradius - r Koordinate in radialer Richtung - dimensionslose Koordinate in radialer Richtung - T Temperatur - T Temperaturschwankung - T b bulk temperature - mittlere Axialgeschwindigkeit - v Geschwindigkeit - v Geschwindigkeitsschwankung - turbulenter Wärmestrom - dimensionsloser Wandabstand - =1/6 Konstante - Integrationsvariable - Integrationsvariable - , 1, 2, dimensionslose Temperaturen - Wärmeleitzahl - n Eigenwerte - kinematische Viskosität - Dichte - tangentiale Koordinate - , Hilfsfunktionen Indizes m in der Rohrmitte - r radial - w an der Rohrwand - z axial - 0 am Rohreintritt - 0 ohne Rotation - tangential  相似文献   

6.
Summary The present work deals with the case of a two-dimensional slider bearing with a rigid pad and an elastic bearing. Fluid viscosity is assumed to be only a pressure function. We determined the bearing deformation, the pressure distribution and the load capacity at different values of the inclination angle of the slider, with a numerical integration of the system consisting of the elasticity and Reynolds equations. The results show that, with an iso-viscous fluid, bearing elasticity causes a load capacity decrease. Instead bearing elasticity together with the variation of fluid viscosity due to pressure causes a load capacity greater than that of the iso-viscous case (=0).
Sommario Il presente lavoro studia il problema della coppia prismatica lubrificata con pattino rigido di allungamento infinito e cuscinetto deformabile; si suppone che la viscosità del fluido sia funzione della sola pressione. Il sistema di equazioni, costituito dall'equazione di Reynolds e dall'equazione dell'elasticità, è stato risolto numericamente, determinando la deformazione del cuscinetto, andamento della pressione e la capacità di carico per diversi valori dell'inclinazione del pattino. I risultati dimostrano che, con fluido isoviscoso, la deformabilità del cuscinetto determina una riduzione della capacità di carico. Se si considera, invece, effetto combinato dell'elasticità del cuscinetto e della variazione della viscosità del fluido, la capacità di carico risulta maggiore di quella che si ottiene con fluido isoviscoso (=0).

Nomenclature /L - /L - x/L - x/L - - ¯C CZ/h 1 - E elasticity modulus - h film thickness - H elastic deformation of the bearing - h 1 minimum film thickness - h 2 inlet thickness - inclination of the pad - h Z/h 1 - HZ/h 1 - L pad length - viscosity - 0 viscosity with no over-pressure - p over pressure - p P ec-P rc where:ec=elastic caserc=rigid case - P h 1 2 /60VL - h 2/h 1=1+L/h 1 - FV bearing velocity - W load capacity per unit width - Wh 2 1 /60 VL 2 - Z E h 3 1 /12 0 VL 2 A first version of this paper was presented at the 7th National AIMETA congress, held at Trieste, October 2–5, 1984. This work was supported by C.N.R.  相似文献   

7.
The mechanism of turbulent heat transfer in the thermal boundary layer developing in the channel flow of a drag-reducing surfactant solution was studied experimentally. A two-component laser Doppler velocimetry and a fine-wire thermocouple probe were used to measure the velocity and temperature fluctuations simultaneously. Two layers of thermal field were found: a high heat resistance layer with a high temperature gradient, and a layer with a small or even zero temperature gradient. The peak value of was larger for the flow with the drag-reducing additives than for the Newtonian flow, and the peak location was away from the wall. The profile of was depressed in a similar manner to the depression of the profile of in the flow of the surfactant solution, i.e., decorrelation between v and compared with decorrelation between u and v. The depression of the Reynolds shear stress resulted in drag reduction; similarly, it was conjectured that the heat transfer reduction is due to the decrease in the turbulent heat flux in the wall-normal direction for a flow with drag-reducing surfactant additives.List of symbols ensemble averaged value - (·)+ normalized by the inner wall variables - (·) root-mean-square value - C concentration of cetyltrimethyl ammonium chloride (CTAC) solution - c p heat capacity - D hydraulic diameter - f friction factor - H channel height - h heat transfer coefficient - j H Colburn factor - l length - Nu Nusselt number, h - Pr Prandtl number, c p/ - q w wall heated flux - Re Reynolds number, U b/ - T temperature - T b bulk temperature - T i inlet temperature - T w wall temperature - T friction temperature, q w /c p u - U local time-mean streamwise velocity - U 1 velocity signals from BSA1 - U 2 velocity signals from BSA2 - U b bulk velocity - u streamwise velocity fluctuation - u1 velocity in abscissa direction in transformed coordinates - u friction velocity, - v wall-normal velocity fluctuation - v1 velocity in ordinate direction in transformed coordinates - var(·) variance - x streamwise direction - y wall-normal direction - z spanwise direction - j junction diameter of fine-wire TC - w wire diameter of fine-wire TC - angle of principal axis of joint probability function p(u,v) - f heat conduction of fluid - w heat conduction of wire of fine-wire TC - kinematic viscosity - local time-mean temperature difference, T w T - temperature fluctuation - standard deviation - density - w wall shear stress  相似文献   

8.
An analysis is presented for laminar source flow between parallel stationary porous disks with suction at one of the disks and equal injection at the other. The solution is in the form of an infinite series expansion about the solution at infinite radius, and is valid for all suction and injection rates. Expressions for the velocity, pressure, and shear stress are presented and the effect of the cross flow is discussed.Nomenclature a distance between disks - A, B, ..., J functions of R w only - F static pressure - p dimensionless static pressure, p(a 2/ 2) - Q volumetric flow rate of the source - r radial coordinate - r dimensionless radial coordinate, r/a - R radial coordinate of a point in the flow region - R dimensionless radial coordinate of a point in the flow region, R - Re source Reynolds number, Q/2a - R w wall Reynolds number, Va/ - reduced Reynolds number, Re/r 2 - critical Reynolds number - velocity component in radial direction - u dimensionless velocity component in radial direction, a/ - average radial velocity, Q/2a - u dimensionless average radial velocity, Re/r - ratio of radial velocity to average radial velocity, u/u - velocity component in axial direction - v dimensionless velocity component in axial direction, v - V magnitude of suction or injection velocity - z axial coordinate - z dimensionless axial coordinate, z a - viscosity - density - kinematic viscosity, / - shear stress at lower disk - shear stress at upper disk - 0 dimensionless shear stress at lower disk, - 1 dimensionless shear stress at upper disk, - dimensionless stream function  相似文献   

9.
A function correlating the relative viscosity of a suspension of solid particles in liquids to their concentration is derived here theoretically using only general thermodynamic ideas, with out any consideration of microscopic hydrodynamic models. This function ( r = exp (1/2B * C 2)) has a great advantage over the many different functions proposed in literature, for it depends on a single parameter,B *, and is therefore concise. To test the validity of this function, a least-squares regression analysis was undertaken of available data on the viscosity and concentration of suspensions of coal particles in fuel oil, which promise to be a useful alternative to fuel oil in the near future. The proposed function was found to accurately describe the concentration-dependent behaviour of the relative viscosity of these suspensions. Furthermore, an attempt was made to obtain information about the factors affecting the value ofB *, however the results were only qualitative because of, among other things, the inaccuracy of the viscosity measurements in such highly viscous fluids. shear viscosity of the suspension - 0 shear viscosity of the Newtonian suspending medium - r = /0 relative viscosity - solid volume concentration - c solid weight concentration - m maximum attainable volume concentration of solids - solid volume concentration at which the relative viscosity of the suspension becomes infinite - c m maximum attainable solid weight concentration - s density of the solid phase - l density of the liquid phase - m density of the suspension - k n coefficients of theø-power series expansion of r - { j } sets of parameters specifying the thermodynamic state of the solid phase of a suspension - T absolute temperature (K) - f (c, T, j) formal expression for the relative variation of the viscosity with concentration = [1 / (/c)] T,j - d median size of the granulometric distribution - B plastic or Bingham viscosity - K consistency factor - n flow index - g ([c m c],T, j ) function including an asymptotic divergence asc tends toc m , formally describing the concentration dependent behaviour of the shear viscosity of a suspension - A (T, j) regression analysis parameters - B (T, j) regression analysis parameters - B * (T, j ) regression analysis parameters  相似文献   

10.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

11.
Zusammenfassung Der Einfluß der Rotation auf das Temperaturprofil und die Wärmeübergangszahl einer laminaren Rohrströmung im Bereich des thermischen Einlaufs wird theoretisch untersucht. Es wird angenommen, daß das Geschwindigkeitsprofil voll ausgebildet ist. Die Rotation hat einen destabilisierenden Einfluß auf die Laminarströmung, die umschlägt und turbulent wird. Aufgrund der Anfachung der Turbulenz durch die Rotation verbessert sich die Wärmeübertragung mit steigender Rotations-Reynoldszahl und die thermische Einlauflänge nimmt beträchtlich ab.
Heat transfer in an axially rotating pipe in the thermal entrance region. Part 2: Effect of rotation on laminar pipe flow
The effects of tube rotation on the temperature distribution and the heat transfer to a fluid flowing inside a tube are examined by analysis in the thermal entrance region. The flow is assumed to be hydrodynamically fully developed. The rotation has a destabilizing effect on the laminar pipe flow, causing a transition to turbulent flow. Therefore, a remarkable increase in heat transfer with increasing rotational Reynolds number can be observed. The thermal entrance length decreases remarkably with growing rotational Reynolds number.

Formelzeichen a Temperaturleitzahl - C n , ,C 1,C 3 Konstanten - c p spezifische Wärme bei konstantem Druck - D Rohrdurchmesser - E Funktion nach Gl. (16) - H n Eigenfunktionen - l hydrodynamischer Mischungsweg - l q thermischer Mischungsweg - N=Re /Re Reynoldszahlenverhältnis - Nu Nusseltzahl - Nu Nusseltzahl für die thermisch voll ausgebildete Strömung - Pr Prandtlzahl - Pr t turbulente Prandtlzahl - Wärmestromdichte - Re * Schubspannungsreynoldszahl - R s Eigenfunktionen - Durchfluß-Reynoldszahl - Re =v D/v Rotations-Reynoldszahl - R Rohrradius - r Koordinate in radialer Richtung - Dimensionslose Koordinate in radialer Richtung - T Temperatur - T b bulk temperature - mittlere Axialgeschwindigkeit - v Geschwindigkeit - dimensionsloser Wandabstand - Integrationsvariable - Integrationsvariable - , dimensionslose Temperaturen - Wärmeleitzahl - p Eigenwerte - kinematische Viskosität - Dichte - tangentiale Koordinate - , Hilfsfunktionen Indizes m in der Rohrmitte - r radial - w an der Rohrwand - z axial - 0 am Rohreintritt - 0 ohne Rotation - tangential  相似文献   

12.
If a fluid enters an axially rotating pipe, it receives a tangential component of velocity from the moving wall, and the flow pattern change according to the rotational speed. A flow relaminarization is set up by an increase in the rotational speed of the pipe. It will be shown that the tangential- and the axial velocity distribution adopt a quite universal shape in the case of fully developed flow for a fixed value of a new defined rotation parameter. By taking into account the universal character of the velocity profiles, a formula is derived for describing the velocity distribution in an axially rotating pipe. The resulting velocity profiles are compared with measurements of Reich [10] and generally good agreement is found.Nomenclature b constant, equation (34) - D pipe diameter - l mixing length - l 0 mixing length in a non-rotating pipe - N rotation rate,N=Re /Re D - p pressure - R pipe radius - Re D flow-rate Reynolds number, - Re rotational Reynolds number, Re =v w D/ - Re* Reynolds number based on the friction velocity, Re*=v*R/ - (Re*)0 Reynolds number based on the friction velocity in a non-rotating pipe - Ri Richardson number, equation (10) - r coordinate in radial direction - dimensionless coordinate in radial direction, - v r ,v ,v z time mean velocity components - v r ,v ,v z velocity fluctations - v w tangential velocity of the pipe wall - v* friction velocity, - axial mean velocity - v ZM maximum axial velocity - dimensionless radial distance from pipe wall, - y + dimensionless radial distance from pipe wall - y 1 + constant - Z rotation parameter,Z =v w/v * =N Re D /2Re* - m eddy viscosity - ( m )0 eddy viscosity in a non-rotating pipe - coefficient of friction loss - von Karman constant - 1 constant, equation (31) - density - dynamic viscosity - kinematic viscosity  相似文献   

13.
Measurements on seven rigid PVC compounds were carried out with a slit rheometer working in combination with an injection moulding machine. Plastication of the compounds occurred in the screw of the plastication unit, which also forced the melt through the die with a controlled forward velocity. The rectangular slit had a length of 90 mm and a widthB of 20 mm. The heightH could be varied between 0.8 and 3.3 mm. Pressures and temperatures were recorded at several positions in and before the die. Measurements were carried out at shear rates from 10 to 2000 s–1.When the reduced volume output was plotted against the wall shear stress W , only four compounds showed master curves independent ofH, which is indicative of wall adhesion. In the other cases this plot did not produce such a master curve, but the plot of the mean velocity against W was independent ofH (slip curve). This indicated that slip flow prevailed with a slip velocityv G When, in the case of wall slip, the smooth inner surfaces of the die were replaced by surfaces with grooves perpendicular to the direction of flow, slip flow was prevented and the flow curves were shifted to much higher values of Wc Above a critical value of the wall shear stress ( Wc ) at which slip flow began, the output became nearly independent of W . From the measurements made below Wc a vs. relation for the shear flow could be derived, which was used to calculate the superimposed shear flow . Exact values of the slip velocity were then given by . Wall slip only occurred for compounds with a high shear viscosity, which corresponds to a high molecular weight (K-value).Dedicated to Professor H. Janeschitz-Kriegl on the occasion of his 60th birthday.  相似文献   

14.
The injection moulding of thermoplastics involves, during mould filling, flows of hot polymer melts into mould networks, the walls of which are so cold that frozen layers form on them. An analytical study of such flows is presented here for the case when the Graetz and Nahme numbers are large and the Pearson number is small. Thus the flows are developing and temperature differences due to heat generation by viscous dissipation are sufficiently large to cause significant variations in viscosity (but the difference between the entry temperature of the polymer to a specific part of the mould network and the melting temperature of the polymer is not). Br Brinkman number - Gz Graetz number - h half-height of channel or disc - h * half-height of polymer melt region in channel or disc - L length of channel or pipe - m viscosity shear-rate exponent - Na Nahme number - p pressure - P pressure drop - Pe Péclet number - Pn Pearson number - Q volumetric flowrate - r radial coordinate in pipe or disc - R radius of pipe - Re Reynolds number - R i inner radius of disc - R o outer radius of disc - R * radius of polymer melt region in pipe - T temperature - T ad adiabatic temperature rise - T e entry polymer melt temperature - T m melting temperature of polymer - T max maximum temperature - T 0 reference temperature - T w wall temperature - flow-average temperature rise - u r radial velocity in pipe or disc - u x axial velocity in channel - u y transverse velocity in channel or disc - u z axial velocity in pipe - w width of channel - x axial coordinate in channel or modified radial coordinate in disc - y transverse coordinate in channel or disc - z axial coordinate in pipe - thermal conductivity of molten polymer - thermal conductivity of frozen polymer - scaled dimensionless axial coordinate in channel or pipe or radial coordinate in disc - 0 undetermined integration constant - heat capacity of molten polymer - viscosity temperature exponent - dimensionless transverse coordinate in channel or disc - * dimensionless half-height of polymer melt region in channel or disc - H * scaled dimensionless half-height of polymer melt region in channel or disc or radius of polymer melt region in pipe - dimensionless temperature - * dimensionless wall temperature - scaled dimensionless temperature - numerical constant - µ viscosity of molten polymer - µ 0 consistency of molten polymer - dimensionless pressure gradient - scaled dimensionless pressure gradient - density of molten polymer - dimensionless radial coordinate in pipe or disc - i dimensionless inner radius of disc - * dimensionless radius of polymer melt region in pipe - dimensionless streamfunction - scaled dimensionless streamfunction - dummy variable - streamfunction - similarity variable - similarity variable  相似文献   

15.
Zusammenfassung Der Übergang eines Stoffes zwischen zwei fluiden Phasen wird betrachtet, von denen sich einer als Strahl in der anderen bewegt. Die Geschwindigkeit der laminar strömenden Phase wird durch eine Gleichung ausgedrückt, die Geschwindigkeitsprofile zwischen der Kolben- und der Rohrströmung kontinuierlich beschreibt. Der Transport des Stoffes im Strahl durch Diffusion in radialer und durch Konvektion in axialer Richtung wird für den isothermen, stationären Fall untersucht. Die das Problem beschreibende Differentialgleichung wird anscheinend erstmals geschlossen gelöst. Die Lösungen beinhalten konfluente hypergeometrische Funktionen. Berechnet werden Eigenwerte, Koeffizienten, örtliche und mittlere Konzentrationsfelder sowie Stoffübergangszahlen.
Mass transfer between two fluids, one of the two fluids is moving as jet within the other
The mass transfer between two fluids is calculated, one of the two fluids is moving as a jet within the other. The velocity of the laminar flowing phase is expressed by an equation, which describes continously the velocity profiles from plug flow to tubular flow. For the isothermal, stationary state the transport of substance i by radial diffusion and by axial convection is investigated. It appears to be that the differential equations describing the problem are solved rigorously for the first time. The solutions contain confluent hypergeometrical functions. Results include eigenvalues, coefficients, local and mean concentration fields, mass transfer numbers.

Verwendete Zeichen und ihre Bedeutung a - A, An Koeffizienten - B, Bn Koeffizienten - c Konzentration, Konstante im Anhang - Cr=0 Mittenkonzentration - c0 Konzentration in Phase I bis z=0 - cII Konzentration in Phase II - ¯c mittlere Konzentration, definiert in Gl. (35) - C Koeffizient, definiert in Gl. (A 21) - D Diffusionskoeffizient - Da Damköhlerzahl - E Funktion, gegeben durch Gl. (A 12) - f, f(R) Funktion f von R - fn, fn (R) Funktionswerte - g, g(Z) Funktion g von Z - gn, gn (Z) Funktionswerte - h(Z) Funktion h von z - Hq Koeffizienten, gegeben durch Gl. (A 10) - j Massenstromdichte - J k , Jq Besselfunktion der Ordnungk, q - k definiert durch Gl. (A 9) - n laufende Zahl - m laufende Zahl - p laufende Zahl - Pe=Re·Sc Pecletzahl - q laufende Zahl - Qn Koeffizienten, definiert in Gl. (31) - r radiale Koordinate - r0 Radius - R r/r0 - Re=u0r0/ Reynoldszahl - S=2r0z Zylinderfläche - Sc=/D Schmidtzahl - Sh=2r0 /D Sherwoodzahl - Sherwoodzahl, definiert in Gl. (52) - Shu Sherwoodzahl, definiert in Gl. (54) - Shz Sherwoodzahl, definiert in Gl. (40) - Sherwoodzahl, definiert in Gl. (45) - t R2 - u Geschwindigkeit - u0 maximale Geschwindigkeit - v - Volumenstrom - w Variable - x Variable - y abhängige Variable - z axiale Koordinate, Lauflänge - Z z/r0 - ZPe dimensionslose Lauflänge, definiert durch Gl. (34) - an Koeffizienten, definiert durch Gl. (A 19) - Stoffübergangskoeffizient - Stoffübergangskoeffizient, definiert in Gl. (48) - u Stoffübergangskoeffizient, definiert in Gl. (49) - z Stoffübergangskoeffizient, definiert in Gl. (38) - Stoffübergangskoeffizient, definiert in Gl. (44) - definiert in Gl. (A 21) - Gammafunktion - c Konzentrationsdifferenz - m Stoffmenge - Zahl zwischen Null und Eins - laufende Zahl - kinematische Zähigkeit - (v) (t) - konfluente hypergeometrische Funktion - (t) - konfluente hypergeometrische Funktion - , n Eigenwerte Hochzeichen - * kennzeichnet asymptotische Lösungen  相似文献   

16.
The fundamental unsteady aerodynamics on a vane row of an axial flow research compressor stage are experimentally investigated, demonstrating the effects of airfoil camber and steady loading. In particular, the rotor wake generated unsteady surface pressure distributions on the first stage vane row are quantified over a range of operating conditions. These cambered airfoil unsteady data are correlated with predictions from a flat plate cascade inviscid flow model. At the design point, the unsteady pressure difference coefficient data exhibit good correlation with the nonseparated predictions, with the aerodynamic phase lag data exhibiting fair trendwise correlation. The quantitative phase lag differences are associated with the camber of the airfoil. An aft suction surface flow separation region is indicated by the steady state surface static pressure data as the aerodynamic loading is increased. This separation affects the increased incidence angle unsteady pressure data.List of symbols b airfoil semi-chord - C airfoil chord - C p dynamic pressure coefficient, - p static pressure coefficient, - i incidence angle - k reduced frequency, - N number of rotor revolutions - p dynamic pressure difference - static pressure difference, - S stator vane circumferential spacing - U t rotor blade tip speed - u longitudinal perturbation velocity - V absolute velocity - V axial absolute axial velocity - v transverse perturbation velocity - x sep location of separation point - inlet angle - inlet air density - blade passing angular frequency  相似文献   

17.
The effective permeability of a heterogeneous porous medium   总被引:5,自引:0,他引:5  
The effective (single-phase) permeability of an (infinite) heterogeneous porous medium is studied using a formalism of Green's functions. We give formal expressions for it in the form of a series expansion involving the microscopic random-permeability field many-body correlation functions of higher and higher order.The particular case of a log-normal medium of infinite extent is studied using field-theoretical methods. Using partial series resummation techniques, we derivea formula up to all orders in the local correlations which was first reckoned by many authors by means of a first-order calculation. The formula — which remains an approximation — works whatever the dimensionality of the space, and gives the following simple estimate for the effective permeability in 3 D:K eff=k 1/33. The method is general and the approximations can be systematically improved on when more complex situations are studied.Roman Letters D number of dimensions of the space in which the flow takes place - f(r) body force field,N - f(q) Fourier-transformed body-force field, Nm3 - G 0(r, r) Green's function of the Laplace operator, m–1 - g(k,r, r) velocity propagator before averaging, m–1 - G(r, r) velocity propagator after averaging, m–1 - j(r) a scalar dimensionless field - k(r) local value of the permeability at point r, m2 - K eff effective permeability - K g geometric average of the local permeability, m2 - l typical size of the averaging volume, m - L characteristic length of the porous medium or of the reservoir, m - L(r, r) projection operator, m–2 - M(r, r) scattering operator, m–3 - p(r) local value of the pressure, Nm–2 - p(k,r, r) pressure propagator before averaging, m–1 - P(r, r) pressure propagator after averaging, m–1 - r position vector, m - r modulus of vectorr, m - unit vector pointing in the direction ofr - q Fourier wave vector, m–1 - q modulus of the Fourier wave-vectorq, m–1 - unit vector pointing in the direction ofq - projector over vector - 1 unit tensor - X(r) a local random variable - ¯X(r) volume averaged local random variable - X (r) ensemble averaged local random variable - V large-scale averaging volume, m3 - Z(j) generating functional of a random field - Z(r,j) modified generating functional of a random field - Z normalization factor Greek Letters 0 average value of the logarithm of the permeability - (r) fluctuation of the logarithm of permeability at pointr - viscosity of the fluid, Nt/m2 - (r–r) two-point correlation function of the fluctuations of the logarithm of the permeability - k correlation length of the permeability correlation function, m - u correlation length of the velocity correlation function, m  相似文献   

18.
Summary Entry lengths for pipe flows of moderately drag reducing fluids are determined using momentum integral technique. It is shown theoretically that the entry lengths for drag reducing fluids could be significantly larger than the Newtonian fluids flowing turbulently under otherwise identical conditions. The experimental data from the literature bear out the theoretical calculations.
Zusammenfassung Mit Hilfe der Impuls-Methode wird die Einlauflänge in einer Rohrströmung für Flüssigkeiten mit mäßig starker Widerstandsverminderung berechnet. Es wird vorausgesagt, daß die Einlauflänge für derartige Flüssigkeiten erheblich größer sein kann als für newtonsche Flüssigkeiten unter sonst identischen Bedingungen. Aus der Literatur entnommene experimentelle Daten bestätigen diese theoretischen Berechnungen.

Nomenclature A 1 Coefficient in eq. [7] - A Slope of logarithmic velocity profile - a Exponent in eq. [10] - B Intercept function for logarithmic velocity profile - De Deborah number, - f Friction factor - F Function, eq. [30] - G Function given in eq. [11] - Static pressure, dynes/cm2 - q Index of power law velocity profile - R Pipe radius, cm - r Radial distance, cm - R Core radius, cm - Re Reynolds number - Axial velocity, cm/s - u c Core velocity, cm/s - u + Dimensionless velocity, eq. [5] - u * Friction velocity, , cm/s - Radial velocity, cm/s - V Average velocity, cm/s - x Axial distance, cm - x e Entry length, cm - y Distance from the wall, cm - y + Dimensionless distance, eq. [5] - y I + Dimensionless viscous sublayer thickness - coefficient in eq. [17] - exponent of Reynolds number in eq. [17] - shear rate, s–1 - boundary layer thickness, cm - fl fluid relaxation time, s - µ fluid viscosity, gm/cm s - v kinematic viscosity, cm2/s - l laminar sublayer thickness, dimensionless - fluid density, gm/cm3 - shear stress, dynes/cm2 - w shear stress at the wall, dynes/cm2 - 1, 2, 3, 4 functions in eq. [27] - ~ time averaged quantities - — dimensionless quantity With 3 figures and 1 table  相似文献   

19.
Harris  S. D.  Ingham  D. B.  Pop  I. 《Transport in Porous Media》2000,39(1):97-117
This paper presents an analytical and numerical study of transient free convection from a horizontal surface that is embedded in a fluid-saturated porous medium. It is assumed that for time steady state velocity and temperature fields are obtained in the boundary-layer which occurs due to a uniform flux dissipation rate q 1 on the surface. Then, at the heat flux on the surface is suddenly changed to q 2 and maintained at this value for . Firstly, solutions which are valid for small and large are obtained. The full boundary-layer equations are then integrated step-by-step for the transient regime from the initial unsteady state ( ) until such times at which this forward marching approach is no longer well posed. Beyond this time no valid solutions could be obtained which matched the final solution from the forward integration to the steady state profiles at large times .  相似文献   

20.
An analytical solution is obtained for the stationary temperature profile in a polymeric melt flowing into a cold cavity, which also takes into account viscous heating effects. The solution is valid for the injection stage of the molding process. Although the analytical solution is only possible after making several (at first sight) rather stringent assumptions, the calculated temperature field turns out to give a fair agreement with a numerical, more realistic approach. Approximate functions were derived for both the dissipation-independent and the dissipation-dependent parts which greatly facilitate the temperature calculations. In particular, a closed-form expression is derived for the position where the maximum temperature occurs and for the thickness of the solidified layer.The expression for the temperature field is a special case of the solution of the diffusion equation with variable coefficients and a source term.Nomenclature a thermal diffusivity [m2/s] - c specific heat [J/kg K] - D channel half-height [m] - L channel length [m] - m 1/ - P pressure [Pa] - T temperature [°C] - T W wall temperature [°C] - T i injection temperature [°C] - T A Br independent part of T - T B Br dependent part of T - T core asymptotic temperature - v z() axial velocity [m/s] - W channel width [m] - x cross-channel direction [m] - z axial coordinate [m] - (x) gamma function - (a, x) incomplete gamma function - M(a, b, x) Kummer function - small parameter - () temperature function - thermal conductivity [W/mK] - viscosity [Pa · s] - 0 consistency index - power-law exponent - density [kg/m] - similarity variable Dimensionless variables Br Brinkman number - Gz Graetz number -   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号