首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A good model? Noble‐metal particulate catalysts often require small amounts of oxygen to obtain optimal activity. However, the structure and stoichiometry of the oxidized metal clusters involved remains obscure, even almost two hundred years after their discovery. A heteropolypalladate salt (see picture; Pd yellow, O red) now offers a view of how oxygen might be incorporated into small noble‐metal clusters.

  相似文献   


2.
Three new patterns of reactivity of rare‐earth metal methylidene complexes have been established and thus have resulted in access to a wide variety of imido rare‐earth metal complexes [L3Ln32‐Me)33‐Me)(μ ‐ NR)] (L=[PhC(NC6H3iPr2‐2,6)2]?; R=Ph, Ln=Y ( 2 a ), Lu ( 2 b ); R=2,6‐Me2C6H3, Ln=Y ( 3 a ), Lu ( 3 b ); R=p‐ClC6H4, Ln=Y ( 4 a ), Lu ( 4 b ); R=p‐MeOC6H4, Ln=Y ( 5 a ), Lu ( 5 b ); R=Me2CHCH2CH2, Ln=Y ( 6 a ), Lu ( 6 b )) and [{L3Lu32‐Me)33‐Me)}2(μ ‐ NR′N)] (R′=(CH2)6 ( 7 b ), (C6H4)2 ( 8 b )). Complex 2 b was treated with an excess of CO2 to give the corresponding carboxylate complex [L3Lu3(μ‐η11‐O2CCH3)3(μ‐η12‐O2C‐CH3)(μ‐η112‐O2CNPh)] ( 9 b ) easily. Complex 2 a could undergo the selective μ3‐Me abstraction reaction with phenyl acetylene to give the mixed imido/alkynide complex [L3Y32‐Me)33‐η113‐NPh)(μ3‐C?CPh)] ( 10 a ) in high yield. Treatment of 2 with one equivalent of thiophenol gave the selective μ3‐methyl‐abstracted products [L3Ln32‐Me)33‐η113‐NPh)(μ3‐SPh)] (Ln=Y ( 11 a ); Lu ( 11 b ). All new complexes have been characterized by elemental analysis, NMR spectroscopy, and most of the structures confirmed by X‐ray diffraction.  相似文献   

3.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.  相似文献   

4.
First-row transition-metal dicarbides MC(2) (M=Sc-Zn) have been investigated by using quantum-mechanical techniques. The competition between cyclic and linear isomers in these systems has been studied and the bonding scheme for these compounds is discussed through topological analysis of electron density. All of the systems have been found to prefer a C(2v)-symmetric arrangement, although for ZnC(2) the energy difference between this and the linear isomer is rather small. In most cases the C(2v)-symmetric structure corresponds to a T-shaped structure, with the exceptions of TiC(2), CoC(2), and NiC(2) which have been shown to be true rings. A detailed analysis of the variation of the energy of the system with geometry has been carried out. An analysis of the bonding, taking into account the main interactions between the valence orbitals of both fragments, the M atom and the C(2) molecule, has allowed the main features of these compounds to be interpreted. A clear correlation between the dissociation energies of the first-row transition-metal dicarbides and the bonding energies of the corresponding met-cars was observed.  相似文献   

5.
Homoleptic tetramethylaluminate complexes [Ln(AlMe4)3] (Ln=La, Nd, Y) reacted with HCpNMe2 (CpNMe2=1‐[2‐(N,N‐dimethylamino)‐ethyl]‐2,3,4,5‐tetramethyl‐cyclopentadienyl) in pentane at ?35 °C to yield half‐sandwich rare‐earth‐metal complexes, [{C5Me4CH2CH2NMe2(AlMe3)}Ln(AlMe4)2]. Removal of the N‐donor‐coordinated trimethylaluminum group through donor displacement by using an equimolar amount of Et2O at ambient temperature only generated the methylene‐bridged complexes [{C5Me4CH2CH2NMe(μ‐CH2)AlMe3}Ln(AlMe4)] with the larger rare‐earth‐metal ions lanthanum and neodymium. X‐ray diffraction analysis revealed the formation of isostructural complexes and the C? H bond activation of one aminomethyl group. The formation of Ln(μ‐CH2)Al moieties was further corroborated by 13C and 1H‐13C HSQC NMR spectroscopy. In the case of the largest metal center, lanthanum, this C? H bond activation could be suppressed at ?35 °C, thereby leading to the isolation of [(CpNMe2)La(AlMe4)2], which contains an intramolecularly coordinated amino group. The protonolysis reaction of [Ln(AlMe4)3] (Ln=La, Nd) with the anilinyl‐substituted cyclopentadiene HCpAMe2 (CpAMe2=1‐[1‐(N,N‐dimethylanilinyl)]‐2,3,4,5‐tetramethylcyclopentadienyl) at ?35 °C generated the half‐sandwich complexes [(CpAMe2)Ln(AlMe4)2]. Heating these complexes at 75 °C resulted in the C? H bond activation of one of the anilinium methyl groups and the formation of [{C5Me4C6H4NMe(μ‐CH2)AlMe3}Ln(AlMe4)] through the elimination of methane. In contrast, the smaller yttrium metal center already gave the aminomethyl‐activated complex at ?35 °C, which is isostructural to those of lanthanum and neodymium. The performance of complexes [{C5Me4CH2CH2NMe(μ‐CH2)AlMe3}‐ Ln(AlMe4)], [(CpAMe2)Ln(AlMe4)2], and [{C5Me4C6H4NMe(μ‐CH2)AlMe3}Ln(AlMe4)] in the polymerization of isoprene was investigated upon activation with [Ph3C][B(C6F5)4], [PhNMe2H][B(C6F5)4], and B(C6F5)3. The highest stereoselectivities were observed with the lanthanum‐based pre‐catalysts, thereby producing polyisoprene with trans‐1,4 contents of up to 95.6 %. Narrow molecular‐weight distributions (Mw/Mn<1.1) and complete consumption of the monomer suggested a living‐polymerization mechanism.  相似文献   

6.
Accumulation of the β‐amyloid (Aβ) peptide in extracellular senile plaques rich in copper and zinc is a defining pathological feature of Alzheimer′s disease (AD). The Aβ1–x (x=16/28/40/42) peptides have been the primary focus of CuII binding studies for more than 15 years; however, the N‐truncated Aβ4–42 peptide is a major Aβ isoform detected in both healthy and diseased brains, and it contains a novel N‐terminal FRH sequence. Proteins with His at the third position are known to bind CuII avidly, with conditional log K values at pH 7.4 in the range of 11.0–14.6, which is much higher than that determined for Aβ1–x peptides. By using Aβ4–16 as a model, it was demonstrated that its FRH sequence stoichiometrically binds CuII with a conditional Kd value of 3×10−14 M at pH 7.4, and that both Aβ4–16 and Aβ4–42 possess negligible redox activity. Combined with the predominance of Aβ4–42 in the brain, our results suggest a physiological role for this isoform in metal homeostasis within the central nervous system.  相似文献   

7.
Accumulation of the β‐amyloid (Aβ) peptide in extracellular senile plaques rich in copper and zinc is a defining pathological feature of Alzheimer′s disease (AD). The Aβ1–x (x=16/28/40/42) peptides have been the primary focus of CuII binding studies for more than 15 years; however, the N‐truncated Aβ4–42 peptide is a major Aβ isoform detected in both healthy and diseased brains, and it contains a novel N‐terminal FRH sequence. Proteins with His at the third position are known to bind CuII avidly, with conditional log K values at pH 7.4 in the range of 11.0–14.6, which is much higher than that determined for Aβ1–x peptides. By using Aβ4–16 as a model, it was demonstrated that its FRH sequence stoichiometrically binds CuII with a conditional Kd value of 3×10?14 M at pH 7.4, and that both Aβ4–16 and Aβ4–42 possess negligible redox activity. Combined with the predominance of Aβ4–42 in the brain, our results suggest a physiological role for this isoform in metal homeostasis within the central nervous system.  相似文献   

8.
A sustainable C C bond formation is merged with the catalytic asymmetric generation of one or two stereocenters. The introduced catalytic asymmetric cross‐coupling of two C H groups with molecular oxygen as the oxidant profits from the oxidative robustness of a chiral‐at‐metal rhodium(III) catalyst and exploits an autoxidation mechanism or visible‐light photosensitized oxidation. In the latter case, the catalyst serves a dual function, namely as a chiral Lewis acid for catalyzing enantioselective enolate chemistry and at the same time as a visible‐light‐driven photoredox catalyst.  相似文献   

9.
The solution properties of a series of transition‐metal–ligand coordination polymers [ML(X)n] [M=AgI, ZnII, HgII and CdII; L=4,4′‐bipyridine (4,4′‐bipy), pyrazine (pyz), 3,4′‐bipyridine (3,4′‐bipy), 4‐(10‐(pyridin‐4‐yl)anthracen‐9‐yl)pyridine (anbp); X=NO3?, CH3COO?, CF3SO3?, Cl?, BF4?; n=1 or 2] in the presence of competing anions, metal cations and ligands have been investigated systematically. Providing that the solubility of the starting complex is sufficiently high, all the components of the coordination polymer, namely the anion, the cation and the ligand, can be exchanged on contact with a solution phase of a competing component. The solubility of coordination polymers is a key factor in the analysis of their reactivity and this solubility depends strongly on the physical properties of the solvent and on its ability to bind metal cations constituting the backbone of the coordination polymer. The degree of reversibility of these solvent‐induced anion‐exchange transformations is determined by the ratio of the solubility product constants for the starting and resultant complexes, which in turn depend upon the choice of solvent and the temperature. The extent of anion exchange is controlled effectively by the ratio of the concentrations of incoming ions to outgoing ions in the liquid phase and the solvation of various constituent components comprising the coordination polymer. These observations can be rationalised in terms of a dynamic equilibrium of ion exchange reactions coupled with Ostwald ripening of crystalline products. The single‐crystal X‐ray structures of [Ag(pyz)ClO4] ( 1 ), {[Ag(4,4′‐bipy)(CF3SO3)] ? CH3CN} ( 2 ), {[Ag(4,4′‐bipy)(CH3CN)]ClO4 ? 0.5 CH3CN} ( 3 ), metal‐free anbp ( 4 ), [Ag(anbp)NO3(H2O)] ( 5 ), {[Cd(4,4′‐bipy)2(H2O)2](NO3)2 ? 4 H2O} ( 6 ) and {[Zn(4,4′‐bipy)SO4(H2O)3] ? 2 H2O} ( 7 ) are reported.  相似文献   

10.
11.
12.
Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape‐controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution‐phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape‐controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.  相似文献   

13.
14.
15.
16.
17.
18.
19.
A new and efficient synthesis of 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives by a one‐pot three‐component reaction between primary amine, dialkyl acetylenedicarboxylate, and itaconic anhydride (=3,4‐dihydro‐3‐methylidenefuran‐2,5‐dione) is reported. The reaction was performed without catalyst and under solvent‐free conditions with excellent yields. Notably, the ready availability of the starting materials, and the high level of practicability of the reaction and workup make this approach an attractive complementary method to access to unknown 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of domino Michael addition? cyclization reaction is proposed (Scheme 2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号