首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boehmite nanoparticles were prepared by a simple and inexpensive procedure in water using commercially available materials without inert atmosphere. Then, the surface of the boehmite nanoparticles was modified using 3‐mercaptopropyltrimethoxysilane and subsequently zirconium oxide was supported on the modified surface. Zirconium oxide supported on boehmite nanoparticles (Pr.S‐ZrO@boehmite) was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and inductively coupled plasma technique. The catalytic application of Pr.S‐ZrO@boehmite was studied in C–O and C–S coupling reactions for synthesis of valuable compounds such as ether and sulfide derivatives. All products were obtained in good to excellent yields and the catalyst could be recovered and reused several times without significant loss of catalytic efficiency. Furthermore, zirconium oxide is rarely used as catalyst for cross‐coupling reactions.  相似文献   

2.
Activation of aromatic C? H bonds by a transition metal catalyst has received significant attention in the synthetic chemistry community. In recent years, rapid and site‐selective extension of π‐electron systems by C–H activation has emerged as an ideal methodology for preparing organic materials with extended π‐systems. This Review focuses on recently reported π‐extending C–H activation reactions directed toward new optoelectronic conjugated materials.  相似文献   

3.
A versatile manganese(I) catalyst was employed in C? H aminocarbonylation reactions of heteroarenes with aryl as well as with alkyl isocyanates using a removable directing group approach. Detailed experimental mechanistic studies were suggestive of an organometallic C? H manganesation step, followed by a rate‐determining migratory insertion.  相似文献   

4.
With PPh3 acting as a ligand, a convenient method for CuCl2‐catalyzed arylation of imidazo[1,2‐b]thiazoles and thiazoles with aryl iodides under mild reaction conditions is described. Preliminary mechanistic studies of this arylation involving a formal Cu(I) to Cu(0) and Cu(II) route by convergent disproportionation of the copper mediator are also reported. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
6.
7.
The rapid development of nanomaterials, particularly advanced hybrid nanoparticles, has made new opportunities for the design and fabrication of high‐performance metal‐based catalysts. However, generating metal nanoparticles of desired size without aggregation is an important challenge for enhancing the catalytic activity of metal nanoparticles supported in the host matrix. In this work, a hybrid nanoporous material, namely Pd nanoparticles@N‐heterocyclic carbene@ZIF‐8, with a high internal surface area was successfully prepared using a dispersed anionic sulfonated N‐heterocyclic carbene–Pd(II) precursor inside the cavities of zeolitic imidazolate framework (ZIF‐8) using an impregnation approach followed by reduction with NaBH4. The anionic sulfonated N‐heterocyclic carbene was found to be a superb ligand for the stabilization of Pd nanoparticles in the pores of ZIF‐8. The resulting system was applied to the Mizoroki–Heck cross‐coupling reaction, in which the catalyst showed high catalytic activity under mild reaction conditions.  相似文献   

8.
1H‐NMR spectrum analyses are applied to study the chemical and thermal stability of selected N‐heterocyclic ionic liquids within the reaction system that can highly efficiently activate a C–H bond of methane and convert it into the C–O bond in methanol. Our results indicate that under such reaction conditions involving using a powerful Pt‐based catalyst and strong acidic solvent, the aromatic ring of an imidazolium cation becomes unstable generating an ammonium ion (NH4+). Our results also suggest that the instability of the imidazolium ring is more chemically (participation in reactions) than thermally based. Modifications of the aromatic ring structure such as pyrazolium and triazolium cations can increase the chemical/thermal stability of ionic liquids under these reaction conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The direct addition of Csp2–H bonds onto polar C=C, C=O, and C=N bonds is both synthetically and mechanistically important, because using aromatic C–H substrates in place of organometallic reagents provides a more direct and atom‐economical alternative to many important compounds without the pre‐generation of organometallic compounds from stoichiometric halides and the unavoidable generation of stoichiometric metal halide waste. In this account, we summarize our contributions to the transition‐metal‐catalyzed addition of aromatic C–H bonds to polar C=C, C=O, and C=N bonds via directing‐group‐assisted regiospecific reactions. These synthetic methods provide efficient access to benzylic alcohols, alkylbenzenes, 3‐substituted phthalides, N‐substituted phthalimides, N‐aryl benzamides, and indene derivatives from commercially available reagents. It is worth noting that valuable heterocycles such as 3‐substituted phthalides and N‐substituted phthalimides can be obtained in one step by this approach.

  相似文献   


10.
Described is a new hydrazone‐based exo‐directing group (DG) strategy developed for the functionalization of unactivated primary β C?H bonds of aliphatic amines. Conveniently synthesized from protected primary amines, the hydrazone DGs are shown to site‐selectively promote the β‐acetoxylation and tosyloxylation via five‐membered exo‐palladacycles. Amines with a wide scope of skeletons and functional groups are tolerated. Moreover, the hydrazone DG can be readily removed, and a one‐pot C?H acetoxylation/DG removal protocol was also discovered.  相似文献   

11.
A simple and efficient route for the preparation of terphenyl derivatives via palladium‐catalyzed sequential directed C―H arylation/Suzuki–Miyaura cross‐coupling in ‘one‐pot’ has been developed. 4,4′‐(Cyclohexane‐1,1‐diyl)diphenol is an essential ligand. This reaction can tolerate a series of functional groups and provides the terphenyl derivatives in moderate to good yield. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Heterogeneous C–S coupling reaction of thiols with polychloroalkanes or alkyl halides was achieved at 30 or 80 °C in the presence of 5 mol% of an MCM‐41‐immobilized bidentate phosphine rhodium complex (MCM‐41‐2P‐RhCl(PPh3)) and triethylamine, yielding a variety of formaldehyde dithioacetals, ethylenedithioethers and unsymmetric thioethers in good to excellent yields. This heterogeneous rhodium catalyst can be easily recovered and recycled by simple filtration of the reaction solution and used for at least 10 consecutive trials without significant loss of activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A protocol is introduced for the preparation of a new cage‐like Pd–Schiff base organometallic complex supported on Fe3O4 nanoparticles (Fe3O4@Schiff‐base‐Pd). The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy, Brunauer–Emmett–Teller measurements, scanning electron microscopy (SEM), transmission electron microscopy, X‐ray mapping, thermogravimetric analysis, vibrating sample magnetometry and inductively coupled plasma atomic emission spectroscopy. In the second stage, the catalytic activity of this catalyst was studied in the Suzuki and Heck cross‐coupling reactions in water as a green solvent. In this sense, simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, short reaction times, high yields and use of green solvent are some advantages of this protocol. Finally, the nanocatalyst was easily recovered, using an external magnet, and reused several times without significant loss of its catalytic efficiency. In addition, the stability of the catalyst after recycling was confirmed using SEM, XRD and FT‐IR techniques.  相似文献   

14.
Described for the first time is that carbon dioxide (CO2) can be successfully inserted into aryl C?H bonds of the backbone of a metal–organic framework (MOF) to generate free carboxylate groups, which serve as Brønsted acid sites for efficiently catalyzing the methanolysis of epoxides. The work delineates the very first example of utilizing CO2 for heterogeneous C?H activation and carboxylation reactions on MOFs, and opens a new avenue for CO2 chemical transformations under mild reaction conditions.  相似文献   

15.
Acylsilanes are known to undergo a 1,2‐silicon‐to‐oxygen migration under thermal or photochemical conditions to form siloxycarbenes. However, there are few reports regarding the application of siloxycarbenes in organic synthesis and surprisingly, their reaction with C? C double or triple bonds remains virtually unexplored. To facilitate such a study, previously inaccessible aromatic acylsilanes containing an ortho‐tethered C? C double bond were identified as suitable substrates. To access these key intermediates, we developed a new synthetic method utilizing a rhodium‐catalyzed oxidative Heck‐type olefination involving the application of an acylsilane moiety as a directing group. When exposed to visible‐light irradiation, the ortho‐olefinated acylsilanes underwent a smooth intramolecular cyclization process to afford valuable indanone derivatives in quantitative yields. This result paves the way for the development of new transformations involving siloxycarbene intermediates.  相似文献   

16.
Density functional theory was employed to investigate rhodium(I)‐catalyzed C–C bond activation of siloxyvinylcyclopropanes and diazoesters. The B3LYP/6‐31G(d,p) level (LANL2DZ(f) for Rh) was used to optimize completely all intermediates and transition states. The computational results revealed that the most favorable pathway was the channel forming the methyl‐branched acyclic product p1 in path A (cyclooctadiene (cod) as the ligand), and the oxidative addition was the rate‐determining step for this channel. It proceeded mainly through the complexation of diazoester to rhodium, rhodium–carbene formation, coordination of siloxyvinylcyclopropane, oxidative addition (C2–C3 bond cleavage) of siloxyvinylcyclopropane, carbene migratory insertion, β‐hydrogen elimination and reductive elimination. The complexation of diazoester to rhodium occurred prior to the coordination of siloxyvinylcyclopropane. Also, the role of the ligands cod, chlorine and 1,4‐dioxane, the effect of di‐rhodium catalyst and the solvent effect are discussed in detail.  相似文献   

17.
A heterogeneous montmorillonite K‐10‐supported palladium triphenylphosphine catalyst is reported for the Suzuki–Miyaura cross‐coupling reaction at room temperature. A library of electronically diverse aryl bromides and arylboronic acids underwent the cross‐coupling reaction at very good rates in aqueous solvent. The reusability of the catalyst was also examined and it was found to be effective up to three catalytic cycles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In the 1H NMR spectra of the 1‐vinylpyrroles with amino‐ and alkylsulfanyl groups in 5 and 2 positions, an extraordinarily large difference between resonance positions of the HA and HB terminal methylene protons of the vinyl group is discovered. Also, the one‐bond 1J(Cβ,HB) coupling constant is surprisingly greater than the 1J(Cβ,HA) coupling constant in pyrroles under investigation, while in all known cases, there was a reverse relationship between these coupling constants. These spectral anomalies are substantiated by quantum chemical calculations. The calculations show that the amine nitrogen lone pair is removed from the conjugation with the π‐system of the pyrrole ring so that it is directed toward the HB hydrogen. These factors are favorable to the emergence of the intramolecular C–HB???N hydrogen bonding in the s‐cis(N) conformation. On the other hand, the spatial proximity of the sulfur to the HB hydrogen provides an opportunity of the intramolecular C–HB???S hydrogen bonding in the s‐cis(S) conformation. Presence of the hydrogen bond critical points as well as ring critical point for corresponding chelate ring revealed by a quantum theory of atoms in molecules (QTAIM) approach confirms the existence of the weak intramolecular C–H???N and C–H???S hydrogen bonding. Therefore, an unusual high‐frequency shift of the HB signal and the increase in the 1J(Cβ,HB) coupling constant can be explained by the effects of hydrogen bonding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A series of imidazolium chlorides for the formation of tridentate CNO‐donor palladium(II) complexes featuring N‐heterocyclic carbene moieties have been developed from cheap and readily available starting materials with high yields. Their palladium complexes were prepared by reactions between the ligand precursors and PdCl2 using K2CO3 as base in pyridine with reasonable yields. These air‐stable metal complexes were characterized using 1H NMR and 13C{1H} NMR spectroscopy and elemental analyses. Heteronuclear multiple bond correlation experiments were performed to identify key NMR signals of these compounds. The structures of two of the complexes were also established by single‐crystal X‐ray diffraction analysis. One of these complexes was successfully applied in the direct C―H functionalization reactions between heterocyclic compounds and aryl bromides, producing excellent yields of coupled products. The coupling reactions were scalable, allowing grams of coupled products to be obtained with a mere 2 mol% of Pd loading. The catalyst system developed allowed the large‐scale preparation of several push–pull chromophores straightforwardly. Photophysical properties based on UV–visible and fluorescence spectroscopy for these chromophores were investigated. Deep blue photoluminescence with moderate quantum efficiency and twisted intramolecular charge transfer excited state were observed for these chromophores. Density functional theory (DFT) and time‐dependent DFT calculations were performed to support the experimental results.  相似文献   

20.
《中国化学》2018,36(1):11-14
A visible light accelerated C–H functionalization reaction in palladium‐catalyzed arylation of vinyl arenes with diaryliodonium salts is reported in the absence of additional photosensitizer. The kinetic isotope effect (kH/kD) was changed from 3.6 (under darkness) to 1.1 when irradiated by visible light, which indicated that the C–H functionalization step was the rate determining step under darkness and significantly accelerated by the irradiation of visible light. Finally the synthesis of ortho tetra‐substituted vinylarene atropisomers with high enantiospecificity was realized via this protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号