首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we introduce a new class of nonsmooth convex functions called SOS-convex semialgebraic functions extending the recently proposed notion of SOS-convex polynomials. This class of nonsmooth convex functions covers many common nonsmooth functions arising in the applications such as the Euclidean norm, the maximum eigenvalue function and the least squares functions with ? 1-regularization or elastic net regularization used in statistics and compressed sensing. We show that, under commonly used strict feasibility conditions, the optimal value and an optimal solution of SOS-convex semialgebraic programs can be found by solving a single semidefinite programming problem (SDP). We achieve the results by using tools from semialgebraic geometry, convex-concave minimax theorem and a recently established Jensen inequality type result for SOS-convex polynomials. As an application, we show that robust SOS-convex optimization proble ms under restricted spectrahedron data uncertainty enjoy exact SDP relaxations. This extends the existing exact SDP relaxation result for restricted ellipsoidal data uncertainty and answers an open question in the literature on how to recover a robust solution of uncertain SOS-convex polynomial programs from its semidefinite programming relaxation in this broader setting.  相似文献   

2.
Robust optimization problems, which have uncertain data, are considered. We prove surrogate duality theorems for robust quasiconvex optimization problems and surrogate min–max duality theorems for robust convex optimization problems. We give necessary and sufficient constraint qualifications for surrogate duality and surrogate min–max duality, and show some examples at which such duality results are used effectively. Moreover, we obtain a surrogate duality theorem and a surrogate min–max duality theorem for semi-definite optimization problems in the face of data uncertainty.  相似文献   

3.
In this paper, we establish tractable sum of squares characterizations of the containment of a convex set, defined by a SOS-concave matrix inequality, in a non-convex set, defined by difference of a SOS-convex polynomial and a support function, with Slater’s condition. Using our set containment characterization, we derive a zero duality gap result for a DC optimization problem with a SOS-convex polynomial and a support function, its sum of squares polynomial relaxation dual problem, the semidefinite representation of this dual problem, and the dual problem of the semidefinite programs. Also, we present the relations of their solutions. Finally, through a simple numerical example, we illustrate our results. Particularly, in this example we find the optimal solution of the original problem by calculating the optimal solution of its associated semidefinite problem.  相似文献   

4.
In this paper, we establish theorems of the alternative for inequality systems of real polynomials. For the real quadratic inequality system, we present two new results on the matrix decomposition, by which we establish two theorems of the alternative for the inequality system of three quadratic polynomials under an assumption that at least one of the involved forms be negative semidefinite. We also extend a theorem of the alternative to the case with a regular cone. For the inequality system of higher degree real polynomials, defined by even order tensors, a theorem of the alternative for the inequality system of two higher degree polynomials is established under suitable assumptions. As a byproduct, we give an equivalence result between two statements involving two higher degree polynomials. Based on this result, we investigate the optimality condition of a class of polynomial optimization problems under suitable assumptions.  相似文献   

5.
We consider ${\epsilon}$ -solutions (approximate solutions) for a robust convex optimization problem in the face of data uncertainty. Using robust optimization approach (worst-case approach), we establish an optimality theorem and duality theorems for ${\epsilon}$ -solutions for the robust convex optimization problem. Moreover, we give an example illustrating the duality theorems.  相似文献   

6.
In this paper, we consider approximate solutions (\(\epsilon \)-solutions) for a convex semidefinite programming problem in the face of data uncertainty. Using robust optimization approach (worst-case approach), we prove an approximate optimality theorem and approximate duality theorems for \(\epsilon \)-solutions in robust convex semidefinite programming problem under the robust characteristic cone constraint qualification. Moreover, an example is given to illustrate the obtained results.  相似文献   

7.
The robust optimization methodology is known as a popular method dealing with optimization problems with uncertain data and hard constraints. This methodology has been applied so far to various convex conic optimization problems where only their inequality constraints are subject to uncertainty. In this paper, the robust optimization methodology is applied to the general nonlinear programming (NLP) problem involving both uncertain inequality and equality constraints. The uncertainty set is defined by conic representable sets, the proposed uncertainty set is general enough to include many uncertainty sets, which have been used in literature, as special cases. The robust counterpart (RC) of the general NLP problem is approximated under this uncertainty set. It is shown that the resulting approximate RC of the general NLP problem is valid in a small neighborhood of the nominal value. Furthermore a rather general class of programming problems is posed that the robust counterparts of its problems can be derived exactly under the proposed uncertainty set. Our results show the applicability of robust optimization to a wider area of real applications and theoretical problems with more general uncertainty sets than those considered so far. The resulting robust counterparts which are traditional optimization problems make it possible to use existing algorithms of mathematical optimization to solve more complicated and general robust optimization problems.  相似文献   

8.
This paper devotes to the quasi \(\epsilon \)-solution (one sort of approximate solutions) for a robust convex optimization problem in the face of data uncertainty. Using robust optimization approach (worst-case approach), we establish approximate optimality theorem and approximate duality theorems in term of Wolfe type on quasi \(\epsilon \)-solution for the robust convex optimization problem. Moreover, some examples are given to illustrate the obtained results.  相似文献   

9.
Modelling of convex optimization in the face of data uncertainty often gives rise to families of parametric convex optimization problems. This motivates us to present, in this paper, a duality framework for a family of parametric convex optimization problems. By employing conjugate analysis, we present robust duality for the family of parametric problems by establishing strong duality between associated dual pair. We first show that robust duality holds whenever a constraint qualification holds. We then show that this constraint qualification is also necessary for robust duality in the sense that the constraint qualification holds if and only if robust duality holds for every linear perturbation of the objective function. As an application, we obtain a robust duality theorem for the best approximation problems with constraint data uncertainty under a strict feasibility condition.  相似文献   

10.
In this paper we present a robust conjugate duality theory for convex programming problems in the face of data uncertainty within the framework of robust optimization, extending the powerful conjugate duality technique. We first establish robust strong duality between an uncertain primal parameterized convex programming model problem and its uncertain conjugate dual by proving strong duality between the deterministic robust counterpart of the primal model and the optimistic counterpart of its dual problem under a regularity condition. This regularity condition is not only sufficient for robust duality but also necessary for it whenever robust duality holds for every linear perturbation of the objective function of the primal model problem. More importantly, we show that robust strong duality always holds for partially finite convex programming problems under scenario data uncertainty and that the optimistic counterpart of the dual is a tractable finite dimensional problem. As an application, we also derive a robust conjugate duality theorem for support vector machines which are a class of important convex optimization models for classifying two labelled data sets. The support vector machine has emerged as a powerful modelling tool for machine learning problems of data classification that arise in many areas of application in information and computer sciences.  相似文献   

11.
In this paper, we study quasi approximate solutions for a convex semidefinite programming problem in the face of data uncertainty. Using the robust optimization approach (worst-case approach), approximate optimality conditions and approximate duality theorems for quasi approximate solutions in robust convex semidefinite programming problems are explored under the robust characteristic cone constraint qualification. Moreover, some examples are given to illustrate the obtained results.  相似文献   

12.
Adjustable robust optimization (ARO) generally produces better worst-case solutions than static robust optimization (RO). However, ARO is computationally more difficult than RO. In this paper, we provide conditions under which the worst-case objective values of ARO and RO problems are equal. We prove that when the uncertainty is constraint-wise, the problem is convex with respect to the adjustable variables and concave with respect to the uncertain parameters, the adjustable variables lie in a convex and compact set and the uncertainty set is convex and compact, then robust solutions are also optimal for the corresponding ARO problem. Furthermore, we prove that if some of the uncertain parameters are constraint-wise and the rest are not, then under a similar set of assumptions there is an optimal decision rule for the ARO problem that does not depend on the constraint-wise uncertain parameters. Also, we show for a class of problems that using affine decision rules that depend on all of the uncertain parameters yields the same optimal objective value as when the rules depend solely on the non-constraint-wise uncertain parameters. Finally, we illustrate the usefulness of these results by applying them to convex quadratic and conic quadratic problems.  相似文献   

13.
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. A robust strong duality theorem is given whenever the Lagrangian function is convex. We provide classes of uncertain non-convex programming problems for which robust strong duality holds under a constraint qualification. In particular, we show that robust strong duality is guaranteed for non-convex quadratic programming problems with a single quadratic constraint with the spectral norm uncertainty under a generalized Slater condition. Numerical examples are given to illustrate the nature of robust duality for uncertain nonlinear programming problems. We further show that robust duality continues to hold under a weakened convexity condition.  相似文献   

14.
We present some Farkas-type results for inequality systems involving finitely many convex constraints as well as convex max-functions. Therefore we use the dual of a minmax optimization problem. The main theorem and its consequences allows us to establish, as particular instances, some set containment characterizations and to rediscover two famous theorems of the alternative.  相似文献   

15.
In this paper we present necessary conditions for global optimality for polynomial problems with box or bivalent constraints using separable polynomial relaxations. We achieve this by first deriving a numerically checkable characterization of global optimality for separable polynomial problems with box as well as bivalent constraints. Our necessary optimality conditions can be numerically checked by solving semi-definite programming problems. Then, by employing separable polynomial under-estimators, we establish sufficient conditions for global optimality for classes of polynomial optimization problems with box or bivalent constraints. We construct underestimators using the sum of squares convex (SOS-convex) polynomials of real algebraic geometry. An important feature of SOS-convexity that is generally not shared by the standard convexity is that whether a polynomial is SOS-convex or not can be checked by solving a semidefinite programming problem. We illustrate the versatility of our optimality conditions by simple numerical examples.  相似文献   

16.
《Optimization》2012,61(11):1761-1779
In this article, we study reward–risk ratio models under partially known message of random variables, which is called robust (worst-case) performance ratio problem. Based on the positive homogenous and concave/convex measures of reward and risk, respectively, the new robust ratio model is reduced equivalently to convex optimization problems with a min–max optimization framework. Under some specially partial distribution situation, the convex optimization problem is converted into simple framework involving the expectation reward measure and conditional value-at-risk measure. Compared with the existing reward–risk portfolio research, the proposed ratio model has two characteristics. First, the addressed problem combines with two different aspects. One is to consider an incomplete information case in real-life uncertainty. The other is to focus on the performance ratio optimization problem, which can realize the best balance between the reward and risk. Second, the complicated optimization model is transferred into a simple convex optimization problem by the optimal dual theorem. This indeed improves the usability of models. The generation asset allocation in power systems is presented to validate the new models.  相似文献   

17.
In this paper, we consider adjustable robust versions of convex optimization problems with uncertain constraints and objectives and show that under fairly general assumptions, a static robust solution provides a good approximation for these adjustable robust problems. An adjustable robust optimization problem is usually intractable since it requires to compute a solution for all possible realizations of uncertain parameters, while an optimal static solution can be computed efficiently in most cases if the corresponding deterministic problem is tractable. The performance of the optimal static robust solution is related to a fundamental geometric property, namely, the symmetry of the uncertainty set. Our work allows for the constraint and objective function coefficients to be uncertain and for the constraints and objective functions to be convex, thereby providing significant extensions of the results in Bertsimas and Goyal (Math Oper Res 35:284–305, 2010) and Bertsimas et al. (Math Oper Res 36: 24–54, 2011b) where only linear objective and linear constraints were considered. The models in this paper encompass a wide variety of problems in revenue management, resource allocation under uncertainty, scheduling problems with uncertain processing times, semidefinite optimization among many others. To the best of our knowledge, these are the first approximation bounds for adjustable robust convex optimization problems in such generality.  相似文献   

18.
In this paper, under the existence of a certificate of nonnegativity of the objective function over the given constraint set, we present saddle-point global optimality conditions and a generalized Lagrangian duality theorem for (not necessarily convex) polynomial optimization problems, where the Lagrange multipliers are polynomials. We show that the nonnegativity certificate together with the archimedean condition guarantees that the values of the Lasserre hierarchy of semidefinite programming (SDP) relaxations of the primal polynomial problem converge asymptotically to the common primal–dual value. We then show that the known regularity conditions that guarantee finite convergence of the Lasserre hierarchy also ensure that the nonnegativity certificate holds and the values of the SDP relaxations converge finitely to the common primal–dual value. Finally, we provide classes of nonconvex polynomial optimization problems for which the Slater condition guarantees the required nonnegativity certificate and the common primal–dual value with constant multipliers and the dual problems can be reformulated as semidefinite programs. These classes include some separable polynomial programs and quadratic optimization problems with quadratic constraints that admit certain hidden convexity. We also give several numerical examples that illustrate our results.  相似文献   

19.
一个一般的Motzkin定理及其应用   总被引:2,自引:0,他引:2  
本文考虑局部凸拓扑向量空间中包含多值映射的不等式系统,在很一般的条件下建立了一个Motzkin型择一定理,并给出了该定理在向量最优化问题中的应用,本文结果涵盖并推广了许多已知择一定理  相似文献   

20.
Near-Subconvexlikeness in Vector Optimization with Set-Valued Functions   总被引:1,自引:0,他引:1  
A new class of generalized convex set-valued functions, termed nearly-subconvexlike functions, is introduced. This class is a generalization of cone-subconvexlike maps, nearly-convexlike set-valued functions, and preinvex set-valued functions. Properties for the nearly-subconvexlike functions are derived and a theorem of the alternative is proved. A Lagrangian multiplier theorem is established and two scalarization theorems are obtained for vector optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号