首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In this work, a series of novel acidic polymerized ionic liquids were used as heterogeneous catalyst for alkylation of o‐Xylene with styrene. And the effect of the amount of initiator and the type of acid used for ion exchange on catalyst structure and the catalytic performance of catalysts for alkylation were studied thoroughly. The experiment results show: when the percentage of the amount of initiator in the total material is 3%, the polymerized ionic liquid catalyst MPM‐SO3H‐[C3V][SO3CF3] has the most uniform with a specific surface area of 97.30 m2/g and a pore volume of 0.35 cm3/g. Benefiting from the unique structure features, MPM‐SO3H‐[C3V][SO3CF3] manifested an excellent catalytic performance for alkylation of o‐Xylene with styrene, along with the conversion of styrene was 96.8% and the yield of 1‐Phenyl‐1‐ortho‐xylene ethane was 94.7%. Therefore, this work provides a novel reference to the synthesis of polymerized ionic liquids and clearly explains the advantage of novel acidic polymerized ionic liquids on alkylation.  相似文献   

2.
The behaviour of FeII and FeIII ions in combination with the potential ligand 1,4‐bis(2‐pyridyl‐methyl)piperazine (BPMP) under anhydrous conditions has been investigated. BPMP has been reacted with FeCl2, FeCl3 and [Fe(OTf)2(MeCN)2]. This led to the isolation of four new complexes, which were fully characterized and structurally investigated by single crystal X‐ray diffraction. It turned out that in the presence of chloride co‐ligands FeIII favours the tetradentate coordination mode of BPMP with the piperazine unit in a boat configuration, like for instance in [BPMP(Cl)Fe(μ‐O)FeCl3] or [BPMP‐FeCl2][FeCl4], ( 1 ). However, the employment of FeCl2 leads to the formation of a coordination polymer [BPMP‐FeCl2]n, ( 2 ), containing the piperazine ring in a chair configuration binding to two iron centres each. 2 can only be dissolved in very polar solvents like dmf which is capable of breaking up the polymeric structure under formation of [Cl2(dmf)Fe(μ‐BPMP‐1κ2N,N:2κ2N,N))Fe(dmf)Cl2]·2 dmf, ( 3 ). In contrast, using [Fe(OTf)2(MeCN)2] instead of FeCl2 as the starting material leads to a mononuclear FeII complex with BPMP bound in the desirable tetradentate fashion: [BPMP‐Fe(OTf)2], ( 4 ). Unlike other complexes with tetradentate N/py ligands the two residual ligands in 4 are bound almost trans to each other with the potential to adopt a cis orientation under oxidising conditions, and it will be interesting to exploit its catalytic properties in future.  相似文献   

3.
A series of concentrated aqueous solutions of ferric chloride with different chloride:iron(III) ratios has been studied by means of EXAFS to determine the structure around the iron(III) ion of the dominating species in such solutions. The dominating species in dilute acidic aqueous solution of ferric chloride, at less than 1 mmol·dm?3, are the hydrated iron(III) and chloride ions, while in concentrated aqueous solution and in solutions with an excess of chloride ions, up to 1.0 mol·dm?3, it is the trans-[FeCl2(H2O)4]+ complex. Possible higher chloroferrate(III) or dimeric [Fe2Cl6] complexes at room temperature, as proposed in the literature, were not observed in any of the studied solutions in spite of an excess of chloride ions of 1 mol·dm?3.  相似文献   

4.
Single crystals of the title complex, tris(1,6‐di­hydro‐9H‐purine‐6‐thione‐N7,S)­iron(II) tetra­chloro­ferrate(III) chloride, [Fe(C5H4N4S)3][FeCl4]Cl, were grown on the surface of solid 6‐mercaptopurine monohydrate pellets in a solution of iron(III) chloride. The solution of the hexagonal structure required the application of twin refinement techniques. All the component ions lie on threefold rotation axes. The complex contains distorted octahedral [Fe(C5H4N4S)3]2+ cations with three N7/S6‐chelating neutral 6‐mercaptopurine ligands, tetrahedral [FeCl4]? anions with a mean Fe—Cl distance of 2.189 (1) Å, and free chloride ions.  相似文献   

5.
Activated with methylaluminoxane (MAO), phenoxy‐based zirconium complexes bis[(3‐tBu‐C6H3‐2‐O)‐CH?NC6H5]ZrCl2, bis[(3,5‐di‐tBu‐C6H2‐2‐O)‐PhC?NC6H5] ZrCl2, and bis[(3,5‐di‐tBu‐C6H2‐2‐O)‐PhC?N(2‐F‐C6H4)]ZrCl2 for the first time have been used for the copolymerization of ethylene with 10‐undecen‐1‐ol. In comparison with the conventional metallocene, the phenoxy‐based zirconium complexes exhibit much higher catalytic activities [>107 g of polymer (mol of catalyst)?1 h?1]. The incorporation of 10‐undecen‐1‐ol into the copolymers and the properties of the copolymers are strongly affected by the catalyst structure. Among the three catalysts, complex c is the most favorable for preparing higher molecular weight functionalized polyethylene containing a higher content of hydroxyl groups. Studies on the polymerization conditions indicate that the incorporated commoner content in the copolymers mainly depends on the comonomer concentration in the feed. The catalytic activity is slightly affected by the Al(MAO)/Zr molar ratio but decreases greatly with an increase in the polymerization temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5944–5952, 2005  相似文献   

6.
The effects of β‐hydrogen‐containing alkyl Grignard reagents in simple ferric salt cross‐couplings have been elucidated. The reaction of FeCl3 with EtMgBr in THF leads to the formation of the cluster species [Fe8Et12]2?, a rare example of a structurally characterized metal complex with bridging ethyl ligands. Analogous reactions in the presence of NMP, a key additive for effective cross‐coupling with simple ferric salts and β‐hydrogen‐containing alkyl nucleophiles, result in the formation of [FeEt3]?. Reactivity studies demonstrate the effectiveness of [FeEt3]? in rapidly and selectively forming the cross‐coupled product upon reaction with electrophiles. The identification of iron‐ate species with EtMgBr analogous to those previously observed with MeMgBr is a critical insight, indicating that analogous iron species can be operative in catalysis for these two classes of alkyl nucleophiles.  相似文献   

7.
In this research, a novel organic–inorganic hybrid salt, namely, N1,N1,N2,N2‐tetramethyl‐N1,N2‐bis(sulfo)ethane‐1,2‐diaminium tetrachloroferrate ([TMBSED][FeCl4]2) was prepared and characterized by Fourier‐transform infrared spectroscopy (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), elemental mapping, field emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), thermal gravimetric (TG), differential thermal gravimetric (DTG), and vibrating‐sample magnetometry (VSM) analyses. Catalytic activity of the hybrid salt was tested for the synthesis of N,N′‐alkylidene bisamides through the reaction of benzamide (2 eq.) and aromatic aldehydes (1 eq.) under solvent‐free conditions in which the products were obtained in high yields and short reaction times. The catalyst was superior to many of the reported catalysts in terms of two or more of these factors: the reaction medium and temperature, yield, time, and turnover frequency (TOF). [TMBSED][FeCl4]2 is a Brønsted–Lewis acidic catalyst; there are two SO3H groups (as Brønsted acidic sites) and two tetrachloroferrate anions (as Lewis acidic sites) in its structure. Highly effectiveness of the catalyst for the synthesis of N,N′‐alkylidene bisamides can be attributed to synergy of the Brønsted and Lewis acids and also possessing two sites of each acid.  相似文献   

8.
The iron‐catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic FeII/FeIII precursors and tris[2‐(diphenylphosphino)ethyl]phosphine ( 1 , PP3). In contrast to most known noble‐metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand‐to‐metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3)]BF4/PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm?1, which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand.  相似文献   

9.
Cyclopentadienyl magnesium chloride (MgClCp) and its functionalized derivatives represent original and interesting supporting materials to heterogenize metallocene catalysts for olefin polymerizations. The synthesis of MgClCp, its functionalization, and the preparation of a catalytic system in which the ZrCl2(Flu)+ moiety is joined on the support through a cyclopentadienyl ligand are reported. This catalyst was tested in ethene polymerization, and both the catalytic activity and properties of the produced polymer were measured. Its performance was compared with that shown by the catalyst ZrCl2CpFlu employed under the same conditions for both unsupported and conventional supports, such as MgCl2. The results showed a remarkable improvement in terms of the activity and polymer properties with these heterogenized catalysts. Moreover, this system showed stability toward leaching processes and was characterized by good morphological control of the growing polymer. Finally, catalysts in which [HB(3,5‐Me2pyrazolyl)3]ZrCl and [HB(3,5‐Me2pyrazolyl)3]ZrClOtBu+ moieties were bonded to a functionalized MgClCp? support were also synthesized and tested. The results showed that the proposed supports could be usefully used to heterogenize tailored metallocene homogeneous catalysts. In fact, new catalysts were prepared that combined the peculiar advantages of both heterogeneous and homogeneous catalysts and overcame the disadvantages of the latter, such as a lack of morphology and reactor fouling. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4243–4248, 2001  相似文献   

10.
New [(N?,N,N?)ZrR2] dialkyl complexes (N?,N,N?=pyrrolyl‐pyridyl‐amido or indolyl‐pyridyl‐amido; R=Me or CH2Ph) have been synthesised and tested as pre‐catalysts for ethene and propene polymerisation in combination with different activators, such as B(C6F5)3, [Ph3C][B(C6F5)4], [HNMe2Ph][B(C6F5)4] or solid AlMe3‐depleted methylaluminoxane (DMAO). Polyethylene (Mw>2 MDa and Mw/Mn = 1.3–1.6) has been produced if pre‐catalysts were activated with 1000 equivalents of DMAO (based on Al) [activity >1000 kgPE (mol[Zr] h mol atm)?1] or by using a higher pre‐catalyst concentration and a mixture of [HNPhMe2][B(C6F5)4] (1 equiv) and AliBu2H (60 equiv). In the case of propene polymerisation, activity has been observed only if pre‐catalysts were treated with an excess of AliBu2H prior to addition of DMAO, which led to highly isotactic polypropylene ([mmmm]>95 %). Neutral pre‐catalysts and ion pairs derived from their activation have been characterised in solution by using advanced 1D and 2D NMR spectroscopy experiments. The detection and rationalisation of intercationic NOEs clearly showed the formation of dimeric species in which some pyrrolyl or indolyl π‐electron density of one unit is engaged in stabilising the metal centre of the other unit, which relegates the counterions in the second coordination sphere. The solid‐state structure of the dimeric indolyl‐pyridyl‐amidomethylzirconium derivative, determined by X‐ray diffraction studies, points toward a weak Zr???η3‐indolyl interaction. It can be hypothesised that the formation of dimeric cationic species hampers monomer coordination (especially of less reactive α‐olefins) and that addition of AliBu2H is crucial to split the homodimers.  相似文献   

11.
The development of effective and inexpensive hydrogen evolution reaction (HER) electrocatalysts for future renewable energy systems is highly desired. The strongly acidic conditions in proton exchange membranes create a need for acid‐stable HER catalysts. A nanohybrid that consists of carbon nanotubes decorated with CoP nanocrystals (CoP/CNT) was prepared by the low‐temperature phosphidation of a Co3O4/CNT precursor. As a novel non‐noble‐metal HER catalyst operating in acidic electrolytes, the nanohybrid exhibits an onset overpotential of as low as 40 mV, a Tafel slope of 54 mV dec?1, an exchange current density of 0.13 mA cm?2, and a Faradaic efficiency of nearly 100 %. This catalyst maintains its catalytic activity for at least 18 hours and only requires overpotentials of 70 and 122 mV to attain current densities of 2 and 10 mA cm?2, respectively.  相似文献   

12.
A simple and facile method for the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones through the direct cyclocondensation of one‐pot three‐component cyclocondensation of isatoic anhydride, ammonium acetate (or primary amines) and aldehydes; and anthranilamide and aldehydes using silica supported ferric chloride (SiO2‐FeCl3) as catalyst under solvent‐free conditions is described.  相似文献   

13.
A new series of Brønsted–Lewis acidic diethyldisulfoammonium chlorometallates, [DEDSA][FeCl4] and [DEDSA]2[Zn2Cl6], were synthesized as solid materials from the reaction of [(Et)2N(SO3H)2][Cl] ionic liquid with transition metal chlorides (FeCl3 and ZnCl2) at 80 °C in neat condition for 2 h. The chlorometallates were fully characterized using various spectroscopic and analytical techniques such as Fourier transform infrared, UV–visible and Raman spectroscopies, powder X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and thermogravimetric analyses, Hammett acidity and elemental analyses. Their catalytic activity was studied as reusable heterogeneous catalysts for the three‐component synthesis of novel 14‐aryl‐7‐(N‐phenyl)‐14H‐dibenzo[a,j]acridines under solvent‐free conditions at 100 °C.  相似文献   

14.
In this work, using divinylbenzene (D), 1‐vinylimidazole (V) and 1‐vinyl‐3‐butylimidazolium bromide ([VBIM][Br]) as monomers, the binary‐monomer poly (ionic liquids) (PILs) and ternary‐monomer PILs were successfully synthesized, via hydrothermal polymerization and anion exchange, sequentially. Compared with each other, the ternary polymeric acidic IL catalyst has a clear spongy porous structure, while having a more stable macroporous structure, a larger specific surface area, more acidic groups and more active sites. Catalytic performance of catalyst was investigated through the alkylation of o‐xylene and styrene. The effect of the amount of IL added and the length of the cation chain on the ternary polymerization of acidic IL was systematically investigated. Under optimal reaction conditions (molar ratio of monomers was D:V:[VBIM][Br] = 2:1:1, the most suitable cation chain length was C4), the synthesized MPD‐[C4V]‐[VBIM][SO3CF3] has a larger specific surface area (89.47 m2/g), large pore volume (0.29 cm3/g), and abundant mesopores and macropores, which help to improve the contact between the active site and reactants. Moreover, the catalyst could maintain a relatively high conversion of styrene (99.0%), 1,2‐diphenylethane yield (98.7%) and high thermostability under reaction and be easily be divided from the solution, which is critical for heterogeneous solid catalysts.  相似文献   

15.
A simple and eco‐friendly method for the preparation of 1,5‐diaryl‐3‐(arylamino)‐1H‐pyrrol‐2(5H)‐ones via the cyclo‐condensation reaction of aldehydes, amines and ethyl pyruvate in the presence of silica supported ferric chloride (SiO2‐FeCl3) as reusable heterogeneous catalyst is described. The present methodology offers several advantages such as excellent yields, simple procedure and short reaction times.  相似文献   

16.
A series of metal‐Al2O3 catalysts were prepared simply by the conventional impregnation with Al2O3 and metal chlorides, which were applied to the dehydration of fructose to 5‐hydroxymethylfurfural (HMF). An agreeable HMF yield of 93.1% was achieved from fructose at mild conditions (100°C and 40 min) when employing Cr(III)‐Al2O3 as catalyst in 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl). The Cr(III)‐Al2O3 catalyst was characterized via XRD, DRS and Raman spectra and the results clarified the interaction between the Cr(III) and the alumina support. Meanwhile, the reaction solvents ([Bmim]Cl) collected after 1st reaction run and 5th reaction run were analyzed by ICP‐OES and LC‐ITMS and the results confirmed that no Cr(III) ion was dropped off from the alumina support during the fructose dehydration. Notably, Cr(III)‐Al2O3 catalyst had an excellent catalytic performance for glucose and sucrose and the HMF yields were reached to 73.7% and 84.1% at 120°C for 60 min, respectively. Furthermore, the system of Cr(III)‐Al2O3 and [Bmim]Cl exhibited a constant stability and activity at 100°C for 40 min and a favorable HMF yield was maintained after ten recycles.  相似文献   

17.
The closo‐dodecaborate [B12H12]2? is degraded at room temperature by oxygen in an acidic aqueous solution in the course of several weeks to give B(OH)3. The degradation is induced by Ag2+ ions, generated from Ag+ by the action of H2S2O8. Oxa‐nido‐dodecaborate(1?) is an intermediate anion, that can be separated from the reaction mixture as [NBzlEt3][OB11H12] after five days in a yield of 18 %. The action of FeCl3 on the closo‐undecaborate [B11H11]2? in an aqueous solution gives either [B22H22]2? (by fusion) or nido‐B11H13(OH)? (by protonation and hydration), depending on the concentration of FeCl3. In acetonitrile, however, [B11H11]2? is transformed into [OB11H12]? by Fe3+ and oxygen. The radical anions [B12H12] ˙ ? and [B11H11] ˙ ? are assumed to be the primary products of the oxidation with the one‐electron oxidants Ag2+ and Fe3+, respectively. These radical anions are subsequently transformed into [OB11H12]? by oxygen. The crystal structure analysis shows that the structure of [OB11H12]? is derived from the hypothetical closo‐oxaborane OB12H12 by removal of the B3 vertex, leaving a non‐planar pentagonal aperture with a three‐coordinate O vertex, as predicted by NMR spectra and theory.  相似文献   

18.
Aza‐crown ether complex cation ionic liquids (aCECILs) were devised, fabricated, and characterized by using NMR spectroscopy, MS, thermogravimetric differential thermal analysis (TG‐DTA), elemental analysis and physical properties. These new and room‐temperature ILs were utilized as catalysts in various organic reactions, such as the cycloaddition reaction of CO2 to epoxides, esterification of acetic acid and alcohols, the condensation reaction of aniline and propylene carbonate, and Friedel–Crafts alkylation of indole with aldehydes were investigated carefully. In these reactions, the ionic liquid exhibited cooperative catalytic activity between the anion and cation. In addition, the aza‐[18‐C‐6HK][HSO4]2 was the best acidic catalyst in the reactions of esterification and Friedel–Crafts alkylation under mild reaction conditions.  相似文献   

19.
Two hexacyanoferrate‐based ionic liquids, [C4Py]3Fe(CN)6 and [C16Py]3Fe(CN)6, were synthesized and characterized using Fourier transform infrared and mass spectroscopies and CHN analysis. They were employed as Fenton‐like catalysts in extraction and catalytic oxidative desulfurization of model oil with dibenzothiophene (DBT), benzothiophene (BT), 4,6‐dimethyldibenzothiophene (4,6‐DMDBT), 4‐methyldibenzothiophene (4‐MDBT) and 3‐methylbenzothiophene (3‐MBT) as substrates. Various polar solvents, such as ionic liquids, water and organic solvents, were applied to choose a suitable extractant. The results showed the removal of DBT reached 97.1% with [C4Py]3Fe(CN)6 as a catalyst and 1‐n‐octyl‐3‐methylimidazolium hexafluorophosphate ([C8mim]PF6) as an extractant under optimal conditions. The activity of sulfur removal followed the order DBT > 3‐MBT > BT > 4‐MDBT >4,6‐DMDBT. The effect of water content on sulfur removal was investigated by adding various concentrations of H2O2. It was found that excess water had a positive effect on sulfur removal but the catalysts were less sensitive than [FeCl4?]‐based catalysts to water. The mechanism was studied using electron spin‐resonance spectroscopy and gas chromatography–mass spectrometry. O2?? may be the active oxygen species in the catalytic oxidative desulfurization process and the oxidation products of various sulfur compounds were the corresponding sulfoxides and sulfones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Two new tetrachloroferrates(III) have been synthesized of molecular formulas [(CH3)2NH2][FeCl4] and [(CH3)2NH2]2FeCl5. The differences in their physicochemical properties have been highlighted using thermal analysis (TG‐MS) and differential scanning calorimetry (DSC). The crystal and molecular structure of [(CH3)2NH]2FeCl5 was determined. The iron(III) cation is four coordinated by chloride ions, and it adopts a slightly distorted tetrahedral coordination with three angles smaller and three larger than the tetrahedral one. In the structure four intermolecular N‐H···Cl hydrogen bonds link the [(CH3)2NH2]+ cations to dimers via a Cl? bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号