首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Polymer, heal thyself! Dynamic polymers formed by a reversible Diels–Alder reaction were formed and studied by using neutron scattering at room temperature. They were used to obtain thin films that displayed self‐healing at room temperature (see figure).

  相似文献   


4.
Mussel adhesives function as tools for surface modifications of a wide variety of materials due to their remarkable adhesion properties. Herein, a combination of bioinspired mussel adhesives based on a dopamine derivative, polymer chemistry, and well‐established Diels–Alder (DA) chemistry leads to a bioinspired switchable surface system that possesses the capability of attaching and detaching specific polymers on demand. A dopaminemaleimide compound, which has been attached to a gold surface under maritime conditions undergoes DA‐ and retro‐DA‐click‐conjugations with cyclopentadiene‐carrying PEG chains. The surface attachment and the subsequent DA/rDA cycles are evidenced via XPS analysis.

  相似文献   


5.
A series of readily accessible, dynamic Diels–Alder reactions that are reversible at room temperature have been developed between anthracene derivatives as dienes and N‐phenyl‐1,2,4‐triazoline‐3,5‐dione as the dienophile. The adducts formed undergo reversible component exchange to form dynamic libraries of equilibrating cycloadducts. Furthermore, reversible adduct formation allows temperature‐dependent modulation of the fluorescent properties of anthracene components; a feature of potential interest for the design of optodynamic polymeric materials by careful selection and manipulation of these simple dienes and dienophiles.  相似文献   

6.
A series of ethynylated silanes, including tetraethynylsilane, was treated with tetraphenylcyclopentadienone at 300 °C under microwave irradiation to give the aromatized Diels–Alder adducts as sterically encumbered mini‐dendrimers with up to 20 benzene rings. The sterically most congested adducts display red‐shifted emission through intramolecular π–π interactions in the excited state.  相似文献   

7.
A dual crosslinked self‐healing polyurethane was prepared with robust mechanical properties through the dynamic reversible pyridine‐Fe3+ coordination bonds and Diels–Alder (DA) covalent bonds dual crosslinking strategy. Moreover, the mechanical properties and self‐healing ability of polyurethane can be tuned readily by different ratio of the coordination bonds and DA bonds. Under external load, the coordination bonds serve as sacrificial bonds are broken to dissipate energy, the DA bonds can keep the shape of sample. With the coordination bonds participation, the damaged samples can be healed under moderate heating treatment or with the aid of FeCl3 solution. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2228–2234  相似文献   

8.
9.
A triol‐functional crosslinker combining the thermoreversible properties of Diels–Alder (DA) adducts in one molecule is designed, synthesized, and used as an ideal substitute of a traditional crosslinker to prepare thermal recyclable cross‐linked polyurethanes with excellent mechanical properties and recyclability in a very simple and efficient way. The recycle property of these materials achieved by the DA/retro‐DA reaction at a suitable temperature is verified by differential scanning calorimetry and in situ variable temperature solid‐state NMR experiments during the cyclic heating and cooling processes. The thermal recyclability and remending ability of the bulk polyurethanes is demonstrated by three polymer processing methods, including hot‐press molding, injection molding, and solution casting. It is notable that all the recycled cross‐linked polymers display nearly invariable elongation/stress at break compared to the as‐synthesized samples. Further end‐group functionalization of this single molecular DA crosslinker provides the potential in preparing a wide range of recyclable cross‐linked polymers.

  相似文献   


10.
One of the most important reactions in fullerene chemistry is the Diels–Alder (DA) reaction. In two previous experimental studies, the DA cycloaddition reactions of cyclopentadiene (Cp) and 1,2,3,4,5‐pentamethylcyclopentadiene (Cp*) with La@C2v‐C82 were investigated. The attack of Cp was proposed to occur on bond 19 , whereas that of Cp* was confirmed by X‐ray analysis to be over bond o . Moreover, the stabilities of the Cp and Cp* adducts were found to be significantly different, that is, the decomposition of La@C2v‐C82Cp was one order of magnitude faster than that of La@C2v‐C82Cp*. Herein, we computationally analyze these DA cycloadditions with two main goals: First, to compute the thermodynamics and kinetics of the cycloadditions of Cp and Cp* to different bonds of La@C2v‐C82 to assess and compare the regioselectivity of these two reactions. Second, to understand the origin of the different thermal stabilities of the La@C82Cp and La@C82Cp* adducts. Our results show that the regioselectivity of the two DA cycloadditions is the same, with preferred attack on bond o . This result corrects the previous assumption of the regioselectivity of the Cp attack that was made based only on the shape of the La@C82 singly occupied molecular orbital. In addition, we show that the higher stability of the La@C82Cp* adduct is not due to the electronic effects of the methyl groups on the Cp ring, as previously suggested, but to higher long‐range dispersion interactions in the Cp* case, which enhance the stabilization of the reactant complex, transition state, and products with respect to the separated reactants. This stabilization for the La@C82Cp* case decreases the Gibbs reaction energy, thus allowing competition between the direct and retro reactions and making dissociation more difficult.  相似文献   

11.
Can achiral organocatalysts linked to chiral polyanionic metal oxide clusters provide good selectivity in enantioselective C?C bond formations? The answer to this question is investigated by developing a new active hybrid polyoxometalate‐based catalyst for asymmetric Diels–Alder reaction. Chirality transfer from the chiral anionic polyoxometalate to the covalently linked achiral imidazolidinone allows Diels–Alder cycloaddition products to be obtained with good yields and high enantioselectivities when using cyclopentadiene and acrylaldehydes as partners.  相似文献   

12.
The Diels–Alder reaction has both enabled and shaped the art and science of total synthesis over the last few decades to an extent which, arguably, has yet to be eclipsed by any other transformation in the current synthetic repertoire. With myriad applications of this magnificent pericyclic reaction, often as a crucial element in elegant and programmed cascade sequences facilitating complex molecule construction, the Diels–Alder cycloaddition has afforded numerous and unparalleled solutions to a diverse range of synthetic puzzles provided by nature in the form of natural products. In celebration of the 100th anniversary of Alder's birth, selected examples of the awesome power of the reaction he helped to discover are discussed in this review in the context of total synthesis to illustrate its overall versatility and underscore its vast potential which has yet to be fully realized.  相似文献   

13.
14.
3D structures are written and developed in a crosslinked polymer initially formed by a Diels–Alder reaction. Unlike conventional liquid resists, small features cannot sediment, as the reversible crosslinks function as a support, and the modulus of the material is in the MPa range at room temperature. The support structure, however, can be easily removed by heating the material, and depolymerizing the polymer into a mixture of low‐viscosity monomers. Complex shapes are written into the polymer network using two‐photon techniques to spatially control the photoinitiation and subsequent thiol–ene reaction to selectively convert the Diels–Alder adducts into irreversible crosslinks.  相似文献   

15.
Multiarm star polymers containing thiol‐reactive maleimide groups at their core have been synthesized by utilization of atom transfer radical polymerization (ATRP) of various methacrylates using a masked maleimide containing multiarm initiator. One end of the initiator contains multiple halogen groups that produce the star architecture upon polymerization and the other end contains a masked maleimide functional group. Unmasking of the maleimide group after the polymerization provides the thiol reactive maleimide core that is widely used in bioconjugation. Functionalization of the core maleimide group with a thiol containing tripeptide was used to demonstrate facile reactivity of the core of these multiarm polymers under reagent‐free conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2546–2556, 2010  相似文献   

16.
Diels–Alder (DA) adducts including 24, 48, and 96 bicyclo end groups on the dendritic periphery were prepared by the reaction of anthracene on the dendrimers (first to fourth generation) and 1,4‐benzoquinone as well as 1,4‐naphtoquinone in boiled toluene. The structural information of DA adducts on the dendritic periphery was received from the hyperfine structural analysis by 1H NMR spectroscopy. The gel permeation chromatography of DA products revealed very low polydispersity values and decreased regular retention time according to increasing generation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2155–2161, 2004  相似文献   

17.
Simple, versatile and green : Diels–Alder “click” chemistry is a simple, versatile and “greener” approach in the design of a diverse range of dendritic macromolecules (see scheme).

  相似文献   


18.
The construction of complex polycyclic terpenoid products in an efficient and step‐economical manner using multicomponent and tandem processes is highly valuable. Herein, we report a tandem cyclization sequence that initiates with a multicomponent double Diels–Alder reaction of cross‐conjugated diynones, followed by a Nazarov cyclization to efficiently produce [6‐5‐6] tricyclic products with excellent regio‐ and diastereoselectivity. This methodology generates five new carbon–carbon bonds, three rings, quaternary or vicinal quaternary carbons, and stereogenic centers in a one‐pot reaction.  相似文献   

19.
The Photo‐Dehydro‐Diels–Alder (PDDA) reaction is shown to be a versatile method for the preparation of highly functionalized naphthalenes. Thus, ketones 1 could be cyclized to the 1H‐benzo[g]isochromen‐4‐(3H)‐ones 11 and 12 , mostly in good yields. The influence of various substituents on the regioselectivity of the reaction was investigated, and the mechanism is discussed based on theoretical calculations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号