首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The substitution reaction of the Pt(IV) complex [PtCl4(bipy)] with guanosine-5??-monophosphate (5??-GMP) was studied by UV?CVis spectrophotometry. This reaction was investigated under pseudo-first-order conditions at 37?°C in 25?mM Hepes buffer (pH?=?7.2) in the presence of 10?mM NaCl to prevent the hydrolysis of the complex. The substitution of chlorides in [{trans-Pt(NH3)2Cl}2(??-1,2-bis(4-pyridyl)ethane)](ClO4)2 (Pt3) complex by 5??-GMP was followed by 1H NMR spectroscopy under second-order conditions. Very similar values for the rate constants of both substitution steps were obtained. The Pt(IV) complexes, [PtCl4(bipy)] and [PtCl4(dach)], as well as dinuclaer Pt(II) [{trans-Pt(NH3)2Cl}2(??-pyrazine)](ClO4)2 (Pt1), [{trans-Pt(NH3)2Cl}2(??-4,4??-bipyridyl)](ClO4)2?·?DMF (Pt2) and [{trans-Pt(NH3)2Cl}2(??-1,2-bis(4-pyridyl)ethane)](ClO4)2 (Pt3) complexes, displayed potent cytotoxic activity against human ovarium carcinoma cell line TOV21G and lower activity toward human colon carcinoma HCT116 cell line at the same concentrations. Our data indicate that these platinum complexes could be explored further, as potential therapeutic agents for ovarian cancer.  相似文献   

2.
We report the synthesis, nucleic acid binding and cytotoxicity of the complexes [Ru(terpy)(Me2bpy)Cl]+, [Ru(terpy)(phen)Cl]+ and dinuclear [{Ru(terpy)Cl}2(??-bbn)]2+ {where Me2bpy = 4,4??-dimethyl-2,2??-bipyridine; phen = 1,10-phenanthroline; and bbn = bis[4(4??-methyl-2,2??-bipyridyl)]-1,n-alkane, with n = 7, 10, 12, 14}. The complexes were isolated from the reaction of the [Ru(terpy)Cl3] precursor with the respective bidentate and di-bidentate bridging ligands. The time-course UV?CVisible spectroscopy of the reaction of the mono- and dinuclear complexes with guanosine 5-monophosphate (GMP) showed the movement of the metal-to-ligand charge transfer (MLCT) band to lower wavelengths, accompanied by a hypochromism effect. The formation of the aqua complex and phosphate-bound intermediates in the reaction were detected by the time-course 1H NMR and 31P NMR experiments, which also demonstrated that the complex bound to the N7 guanine was the major product. The UV?CVisible and 1H NMR studies showed no evidence of the interaction of the complexes with both adenosine 5-monophosphate (AMP) and cytidine 5-monophosphate (CMP). Cytotoxicity studies of these complexes against a murine leukemia L1210 cell line revealed that the dinuclear [{Ru(terpy)Cl}2(??-bbn)]2+ complexes were significantly more cytotoxic than mononuclear [Ru(terpy)(Me2bpy)Cl]+. The [{Ru(terpy)Cl}2(??-bb14)]2+ complex appeared to be the most active (IC50 = 4.2 ??M).  相似文献   

3.
The kinetics of the complex formation reactions of two [(TL tBu)PtCl]+ and [Pt(tpdm)Cl]+ complexes (TL tBu = 2,6-bis[(1,3-di-tert-butylimidazolin-2-imino)methyl]pyridine and tpdm = terpyridinedimethane) with N-donor ligands, l-histidine (L-His), inosine (Ino), inosine-5′-monophosphate (5′-IMP) and guanosine-5′-monophosphate (5′-GMP), were studied. All reactions were studied under pseudo-first-order conditions as a function of nucleophile concentration and temperature in aqueous 0.1 M NaClO4 solution in the presence of 10 mM NaCl using variable-temperature Uv–Vis spectrophotometry. The order of reactivity of the studied ligands is L-His > Ino > 5′-GMP > 5′-IMP. This order of reactivity is in relation to their electronic properties and structures. The mechanism of the substitution reactions is associative in nature as supported by the negative entropy of activation.  相似文献   

4.
The formation equilibria of the [Pt(SMC)(H2O)2]+ complex with some biologically relevant ligands such as L-methionine (L-met) and glutathione (GSH) were studied. The stoichiometry and stability constants of the formed complexes are reported, and the concentration distribution of the various complex species has been evaluated as a function of pH. The reaction between [PtCl2(SMC)] and guanosine-5′-monophosphate (5′-GMP) was studied by 1H NMR spectroscopy. The NMR spectra indicated that first step is the hydrolysis of the [PtCl2(SMC)] complex and second step is the substitution of an aqua ligand, either in the cis or trans position with guanosine-5′-monophosphate in molar ratio 1:1. The values of rate constant showed faster substitution of coordinated H2O in the trans position to the S donor atom of S-methyl-L-cysteine, whereas the slower reaction was assigned to the displacement of the cis coordinated aqua molecule. This is due to the strong trans labilization effect of coordinated sulfur. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

5.

Abstract  

The hydrolysis and complex formation equilibria of [Pt(dach)(H2O)2]2+, where dach is (R,R)-trans-1,2-diaminocyclohexane, with some sulfur- and nitrogen-bonding ligands, such as l-methionine, glutathione, inosine, inosine-5′-monophosphate, and guanosine-5′-monophosphate, were studied in aqueous 0.10 M NaClO4 solution at 298 K by potentiometric titrations. The experimentally determined pK a values for the studied diaqua complex were 6.00 and 10.03, respectively. The acid dissociation constants of the ligands were also determined. The stoichiometry and stability constants of the formed complexes are reported, as well as the concentration distribution of the various complex species evaluated as a function of pH. In all studied systems, species with one coordinated molecule of ligand were detected. However, only in systems with l-methionine and inosine, complexes with two molecules of ligand directly coordinated to the Pt(II) ion were found. The results also show that glutathione formed the most stable complexes. These results could contribute to better understanding of the interactions between Pt(II) complexes and biologically significant molecules.  相似文献   

6.
Substitution reactions of [CuCl2(en)] and [CuCl2(terpy)] complexes (where en = 1,2-diaminoethane and terpy = 2,2′:6′,2″-terpyridine) with bio-relevant nucleophiles such as inosine-5′-monophosphate (5′-IMP), guanosine-5′-monophosphate (5′-GMP), L-methionine (L-Met), glutathione (GSH) and DL-aspartic acid (DL-Asp) have been investigated at pH 7.4 in the presence of 0.010 M NaCl. Mechanism of substitution was probed via mole-ratio, kinetic, mass spectroscopic and EPR studies at pH 7.4. In the presence of an excess of chloride, the octahedral complex anion [CuCl4(en)]2? is formed rapidly while equilibrium reaction was observed for [CuCl2(terpy)]. Different order of reactivity of bio-molecules toward Cu(II) complexes was observed. Mass spectrum of [CuCl2(terpy)] in Hepes buffer has shown two new signals at m/z = 477.150 and m/z = 521.00, assigned to [CuCl(terpy)]+-Hepes fragments of coordinated Hepes buffer. These signals also appear in the mass spectra of ligand substitution reactions between [CuCl2(terpy)] and bio-molecules in molar ratio 1:1 and 1:2. According to EPR data, L-Met forms the most stable complex with [CuCl2(en)] among the ligands considered, while [CuCl2(terpy)] complex did not show significant changes in its square-pyramidal geometry in the presence of the buffer or bio-ligands.  相似文献   

7.
The syntheses of cationic ruthenium(II) complexes [Ru(Me2-bpy)(PPh3)2RR?][PF6]x {Me2-bpy = 4,4?-dimethyl-2,2?-bipyridine, (3) R = Cl, R? = N≡CMe, x = 1, (4) R = Cl, R? = N≡CPh, x = 1, (5) R = R? = N≡CMe, x = 2} and [Ru(Me2-bpy)(κ2-dppf)RR?][PF6]x {dppf = 1,1?-bis(diphenylphosphino)ferrocene, (6) R = Cl, R? = N≡CMe, x = 1, (7) R = Cl, R? = N≡CPh, x = 1, (8) R = R? = N≡CMe, x = 2} are reported, together with their structural confirmation by NMR (31P, 1H) and IR spectroscopy and elemental analysis, and, in the case of trans-[Ru(Me2-bpy)(PPh3)2(N≡CCH3)Cl][PF6] (3), by X-ray crystallography. Electronic absorption and emission spectra of the complexes reveal that all complexes except 4 and 6 are emissive in the range 370–400 nm with 8 exhibiting an emission in the blue. Cyclic voltammetry studies of 3–8 show reversible or quasi-reversible redox processes at ca. 1 V, assigned to the Ru(II/III) couple.  相似文献   

8.
Cover Image     
The novel heteronuclear complexes [{cis-PtCl (NH3)(μ-pyrazine)ZnCl (terpy)}](ClO4)2 (Pt-L1-Zn) and [{cis-PtCl (NH3)(μ-4,4′-bipyridyl)ZnCl (terpy)}](ClO4)2 (Pt-L2-Zn) (where terpy = 2,2′:6′,2′′-terpyridine, L1 = pyrazine, L2 = 4,4′-bipyridyl) were synthesized and characterized. The pKa values were determined, and based on them it was established that the π-acceptor ability of the pyrazine bridging ligand is more affective on lower pKa values. The kinetic measurements of the substitution reactions with biologically relevant ligands, such as guanosine-5′-monophosphate (5′-GMP), inosine-5′-monophosphate (5′-IMP) and glutathione (GSH), were studied at pH 7.4. The reactions were followed under pseudo-first-order conditions by UV–Vis spectrophotometry. The order of reactivity of the investigated biomolecules for the first reaction is 5′-GMP > 5′-IMP > GSH, while for the second is 5′-IMP > GSH. Pt-L1-Zn complex is more reactive than Pt-L2-Zn. The cytotoxic activity of heteronuclear Pt-L1-Zn and Pt-L2-Zn complexes was determined on human colorectal cancer cell line (HCT-116) and human breast cancer cell line (MDA-MB-231). Both complexes significantly reduced cell viability on tested cell lines and exerted significant cytotoxic effects, with better effect on HCT-116 cells than cisplatin, especially after 72 hr (IC50 < 0.52 μM). The Pt-L2-Zn complex showed higher activity against human breast cancer cells (MDA-MB-231) than cisplatin after 72 hr. The higher reactivity toward DNA constituent and significant cytotoxic activity may be attributed to the different geometry, Lewis acidity of different metal centers, as well as, to choice of bridging ligands.  相似文献   

9.
The substitution reactions of the complexes [{trans‐Pt(NH3)2H2O}2(μ‐1,4‐diaminobutane)]4+ ( I ), [{trans‐Pt(NH3)2H2O}2(μ‐1,6‐diaminohexane)]4+ ( II ), and [{trans‐Pt(NH3)2H2O}2(μ‐1,8‐diaminooctane)]4+ ( III ), with nucleophiles L‐cysteine (L‐Cys), glutathione (GSH), guanosine‐5′‐monophosphate (5′‐GMP), L‐histidine (L‐His), and pyridine were studied in 0.1 M NaClO4 aqueous solutions at pH = 2.5. The substitutions were studied under pseudo‐first‐order conditions as a function of concentration and temperature using UV–vis spectrophotometry. At three different temperatures (288, 298, and 308 K) the reactions of the II and III complexes and 5′‐GMP were studied. The order of reactivity of study ligands is L‐Cys > GSH > 5′‐GMP > L‐His > pyridine and the order of reactivity of the complexes is I < II ≈ III . The obtained results indicate that the structure of the alkanediamine linker in the dinuclear Pt(II) complexes controls the substitution process. The negative values reported for entropy of activation confirmed the associative substitution mode. These results are discussed in order to find the connection between structure and reactivity of the dinuclear Pt(II) complexes.  相似文献   

10.
Abstract

Interactions of copper(II) complexes which contain S-alkyl derivatives of thiosalicylic acid (alkyl?=?methyl, ethyl, propyl and butyl; aryl?=?benzyl), marked as 15, with guanosine-5′-monophosphate (5′-GMP) and calf thymus DNA (CT-DNA) were studied. Kinetics of substitution reactions of 15 with 5′-GMP and CT-DNA were investigated under pseudo-first-order conditions at 310 K and pH = 7.2 in 25?mM Hepes buffer using stopped-flow method. All complexes have high affinity toward studied bio-molecules. Additionally, interactions with CT-DNA were followed by absorption spectroscopy and fluorescence quenching measurements. The results indicate that complexes bind to DNA exhibiting high binding constants (Kb = 104 M?1). During the examination of competitive reactions with ethidium bromide (EB), results showed that complexes can replace EB-bound DNA. In addition, a new crystal structure of the binuclear Cu(II) complex with S-substituted thiosalicylate derivative has been reported. In the present series of Cu(II) complexes the crystal structure is the first example of a complex comprising an S-aryl derivative of thiosalicylate ligand. Through comparative study of structural properties of six molecules from four crystal structures we examined the structural variations, potentially important for biological activity of these complexes.  相似文献   

11.
12.
The crystal structure of K[PtCl3(caffeine)] was determined. The coordination geometry around platinum is square-planar formed by N9 of the caffeine ligand and three Cl? ions. The bond lengths and angles of K[PtCl3(caffeine)] were compared with those reported for [PtCl3(caffeine)]? and K[PtCl3(theobromine)]. At the level of the statistical significance of the data we have compared, no differences in the bond distances and angles for any of these compounds were noticed. Weak interactions between K+ and Cl? are responsible for the formation of 1-D polymeric chains in the crystal structure of the complex. The interactions of K[PtCl3(caffeine)] with inosine (Ino) and guanosine-5′-monophosphate (5′-GMP) were studied by 1H NMR spectroscopy at 295 K in D2O in a molar ratio of 1 : 1. The results indicate formation of the reaction product [PtCl3(Nu)] (Nu=Ino or 5′-GMP) with the release of caffeine from the coordination sphere of the starting complex. The higher stability of the bond between the Pt(II) ion and Ino or 5′-GMP compared to the stability of the platinum–caffeine bond is confirmed by density functional theory calculations (B3LYP/LANL2DZp) using as models 9-methylhypoxanthine and 9-methylguanine.  相似文献   

13.
The 195Pt-NMR chemical shifts of all possible hydrolysis products of [PtCl6]2? in acidic and alkaline aqueous solutions are calculated employing simple non-relativistic density functional theory computational protocols. Particularly, the GIAO-PBE0/SARC-ZORA(Pt) ∪ 6-31 + G(d)(E) computational protocol augmented with the universal continuum solvation model (SMD) performs the best for calculation of the 195Pt-NMR chemical shifts of the Pt(IV) complexes existing in acidic and alkaline aqueous solutions of [PtCl6]2?. Excellent linear plots of δcalcd(195Pt) chemical shifts versus δexptl(195Pt) chemical shifts and δcalcd(195Pt) versus the natural atomic charge QPt are obtained. Very small changes in the Pt–Cl and Pt–O bond distances of the octahedral [PtCl6]2?, [Pt(OH)6]2?, and [Pt(OH2)6]4+ complexes have significant influence on the computed σiso 195Pt magnetic shielding tensor elements of the anionic [PtCl6]2? and the computed δ 195Pt chemical shifts of [Pt(OH)6]2? and [Pt(OH2)6]4+. An increase of the Pt–Cl and Pt–O bond distances by 0.001 Å (1 mÅ) is accompanied by a downfield shift increment of 17.0, 19.4, and 37.6 ppm mÅ?1, respectively. Counter-anion effects in the case of the highly positive charged complexes drastically improve the accuracy of the calculated 195Pt chemical shifts providing values very close to the experimental ones.  相似文献   

14.
Substitution reactions of [Pt(terpy)Cl]+ (terpy = 2,2′;6′,2′′-terpyridine), [Pt(bpma)Cl]+ (bpma = bis(2-pyridylmethyl)amine), [Pt(dien)Cl]+ (dien = diethylenetriamine or 1,5-diamino-3-azapentane) and [Pt(tpdm)Cl]+ (tpdm = tripyridinedimethane) with nitrogen donor heterocyclic molecules, such as 3-amino-4-iodo-pyrazole (pzI), 5-amino-4-bromo-3-methyl-pyrazole (pzBr) and imidazole (Im), were studied in aqueous 0.10 M NaClO4 in the presence of 10 mM NaCl using variable-temperature UV–vis spectrophotometry. The second-order rate constants k2 indicate decrease in reactivity in the order [Pt(terpy)Cl]+ > [Pt(bpma)Cl]+ > [Pt(tpdm)Cl]+ > [Pt(dien)Cl]+. The most reactive nucleophile among the heterocyclic compounds is imidazole, while pzI shows slightly higher reactivity than pzBr. Activation parameters were also determined and the negative values for entropies of activation, ΔS, support an associative mode of substitution for all substitution processes. Crystal structure of [Pt(bpma)(pzBr)]Cl2·2H2O was determined by single-crystal X-ray analysis. The coordination geometry of the complex is distorted square-planar while the bond distance Pt–N2(pzBr) is longer than the other three Pt–N distances.  相似文献   

15.
The rate of substitution of the chloride and aqua moieties from the platinum(II)-amine complexes, viz. [Pt(dien)Cl]Cl(Pt1-Chloro) and [Pt(en)(NH3)Cl]Cl (Pt2-Chloro) and their corresponding aqua analogues, viz. [Pt(dien)(OH2)] (ClO4)2 (Pt1-Aqua) and [Pt(en)(NH3)(OH2)](ClO4)2 (Pt2-Aqua), by a series of neutral and anionic nucleophiles,viz. thiourea (TU), 1,3-dimethyl-2-thiourea (DMTU), 1,1,3,3-tetramethyl-2-thiourea (TMTU), iodide (I) and thiocyanate (SCN), was determined under pseudo first-order conditions as a function of concentration and temperature using UV/Visible spectrophotometry and standard stopped-flow techniques. The observed pseudo first-order rate constants for the substitution reactions obeyed the simple rate law k obs = k 2[Nucleophile]. Second-order kinetics and negative activation entropies, ca. −93 J K−1 mol−1 and −71 J K−1 mol−1, for the chloro and aqua complexes respectively, support an associative mode of activation. The rate of substitution of both the chloro and aqua moieties are observed to decrease with an increase in the steric bulk of the neutral nucleophiles, whilst rate of substitution by SCN was observed to be faster than that of I, in correlation with the observed nucleophilicities of the two nucleophiles. A comparison of the second-order rate constants, k 2, at 298 K, obtained for the substitution reactions of Pt1and Pt2 shows that an increase in chelation in moving from Pt2 to Pt1 results in a corresponding increase in the reactivity, by a factor of ca. 3, (28.31 ± 0.15 and 8.02 ± 0.13 m −1 s−1 for Pt1 and Pt2 respectively, in the case of substitution of the aqua species by TU). Computational analysis of the chloro complexes, viz. Pt1-Chloro, Pt2-Chloro and [Pt(NH3)3Cl]Cl (Pt3) support this conclusion by demonstrating that the Pt–N bond trans to the leaving group is shortened and that the Pt–Cl bond is lengthened when chelation is increased from Pt3 to Pt1. Consequently, these results suggest that the increase in reactivity of Pt1 over Pt2, promoted by increased chelation, is as a result of ground state destabilization.  相似文献   

16.
Reactions between [Pd(C2,N-dmba)(μ-X)]2 (Hdmba?=?N,N-dimethylbenzylamine; X?=?Cl, Br, NCO, N3) and 1,3-bis(4-pyridyl)propane (bpp) in 1?:?1 molar ratio at room temperature resulted in the binuclear compounds [{Pd(C2,N-dmba)(X)}2(μ-bpp)] (X?=?Cl (1), Br (2), NCO (3), N3 (4)), which were characterized by elemental analyses, infrared (IR), 1H- and 13C{1H}-NMR spectroscopies, and thermogravimetric analysis. The IR and NMR data of 14 were consistent with the presence of bridging bpp. The thermal stability order of the complexes was 4?>?3?>?2?>?1. Compounds 14 and bpp were tested against Mycobacterium tuberculosis and their MIC values were determined.  相似文献   

17.
The chiral dinuclear heterometallic complexes [Cu(dach)2][Pt(CN)4]?·?2H2O (1), [Ni(dach)3][Pt(CN)4]?·?2DMF?·?H2O (2), and [Pd(dach)4][Pt(CN)4]?·?H2O (3) (dach?=?1R,2R-cyclohexanediamine) have been prepared and characterized by X-ray diffraction analysis. Crystal data: 1, monoclinic, P21, a?=?8.108(3), b?=?15.552(6), c?=?9.914(4)?Å, β?=?110.931(6)°, V?=?1167.6(8)?Å3, Z?=?2, R 1?=?0.0420, wR 2?=?0.1122; 2, monoclinic, P21, a?=?13.264(11), b?=?9.285(7), c?=?16.211(13)?Å, β?=?111.640(9)°, V?=?1856(3)?Å3, Z?=?2, R 1?=?0.0276, wR 2?=?0.0698; 3, monoclinic, P21, a?=?6.887(2), b?=?12.809(4), c?=?12.975(4)?Å, β?=?94.865(4)°, V?=?1140.6(6)?Å3, Z?=?2, R 1?=?0.057, wR 2?=?0.156. In complex 1, the Pt and Cu atoms are linked by a CN bridge that presents a very bent C=N–Cu angle [136.8(8)°].  相似文献   

18.
Two ruthenium(III) complexes containing ethylenediaminetetraacetate(edta), viz. [{Ru(Hedta)}2L]·xH2O L = 4,4′-bipyridine(bpy) (1) and 4,4′-azopyridine(Azpy) (2), have been synthesized by the reaction between K[Ru(Hedta)Cl]·1.5H2O and the corresponding N-heterocycles. Complex 1 was determined by single-crystal X-ray diffraction. The products were characterized by IR, UV–vis, cyclic voltammetry, and magnetic techniques. Their DNA-binding activities were investigated using electronic absorption spectroscopic methods and ?uorescence quenching; the experimental results show that these two ruthenium complexes may bind to CT-DNA through intercalation modes.  相似文献   

19.
The mechanism of substitution from tetrahedral [ZnCl2(en)] and square-pyramidal [ZnCl2(terpy)] complexes (where en = 1,2-diaminoethane or ethylenediamine and terpy = 2,2′:6′,2′′-terpyridine) by guanosine-5′-monophosphate (5′-GMP) have been investigated by 1H NMR spectroscopy. The substitution reaction of [ZnCl2(terpy)] complex is faster than the reaction of [ZnCl2(en)], which was finished after 48?h. Information about the structures of the final products in solution were obtained from the DFT calculations (B3LYP/6-31G(d)) and experimental 1H NMR data acquired during the course of the reaction. The cytotoxic activity of zinc(II) complexes was tested on human breast cancer cell line MDA-MB-231, human colon cancer cell line HCT-116 and normal human lung fibroblast cell line MRC-5. Both complexes reduced cell viabilities, while [ZnCl2(terpy)] was significantly cytotoxic on MDA-MB-231 after 72?h, and HCT-116 after 24?h without dose dependence. The differences in reactivity toward 5′-GMP and cytotoxic activity of Zn(II) complexes may be attributed to the very stable square-pyramidal geometry of [ZnCl2(terpy)] in solution, while weak ligand effect of the en compared to the terpy affected slow interaction of tetrahedral [ZnCl2(en)] complex with the target bio-molecule.  相似文献   

20.
Thiopurines bis(S-8-thiotheophylline)methane (MBTTH2), 1,2-bis(S-8-thiotheophylline)ethane (EBTTH2), and 1,3-bis(S-8-thiotheophylline)propane (PBTTH2) were reacted with [RuClCp(mPTA)2](CF3SO3)2 in water to afford the bis-ruthenium complexes [{RuCp(mPTA)2}2-μ-(L-κN7,N′7)](CF3SO3)4 (1: L = MBTT; 2: L = EBTT; 3: L = PBTT), which have been characterized by elemental analysis, IR, and multinuclear NMR (1H, 13C{1H}, 31P{1H} and 19F{1H}) spectroscopy). Diffusion experiments for 1 were carried out. Proposed structures for the three complexes were also supported by theoretical calculations. Cyclic voltammetry showed that these complexes are characterized by two one-electron irreversible oxidative response (RuII – RuII/RuIII – RuII; RuIII – RuII/RuIII – RuIII). Complexes showed poor antiproliferative activity against cisplatin-sensitive T2 human cell line and the cisplatin-resistant SKOV3 cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号