首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present Lagrange multiplier necessary conditions for global optimality that apply to non-convex optimization problems beyond quadratic optimization problems subject to a single quadratic constraint. In particular, we show that our optimality conditions apply to problems where the objective function is the difference of quadratic and convex functions over a quadratic constraint, and to certain class of fractional programming problems. Our necessary conditions become necessary and sufficient conditions for global optimality for quadratic minimization subject to quadratic constraint. As an application, we also obtain global optimality conditions for a class of trust-region problems. Our approach makes use of outer-estimators, and the powerful S-lemma which has played key role in control theory and semidefinite optimization. We discuss numerical examples to illustrate the significance of our optimality conditions. The authors are grateful to the referees for their useful comments which have contributed to the final preparation of the paper.  相似文献   

2.
In this paper, a new local optimization method for mixed integer quadratic programming problems with box constraints is presented by using its necessary global optimality conditions. Then a new global optimization method by combining its sufficient global optimality conditions and an auxiliary function is proposed. Some numerical examples are also presented to show that the proposed optimization methods for mixed integer quadratic programming problems with box constraints are very efficient and stable.  相似文献   

3.
In this paper, we investigate a constrained optimization problem with a quadratic cost functional and two quadratic equality constraints. While it is obvious that, for a nonempty constraint set, there exists a global minimum cost, a method to determine if a given local solution yields the global minimum cost has not been established. We develop a necessary and sufficient condition that will guarantee that solutions of the optimization problem yield the global minimum cost. This constrained optimization problem occurs naturally in the computation of the phase margin for multivariable control systems. Our results guarantee that numerical routines can be developed that will converge to the global solution for the phase margin.  相似文献   

4.
In this paper, we first examine how global optimality of non-convex constrained optimization problems is related to Lagrange multiplier conditions. We then establish Lagrange multiplier conditions for global optimality of general quadratic minimization problems with quadratic constraints. We also obtain necessary global optimality conditions, which are different from the Lagrange multiplier conditions for special classes of quadratic optimization problems. These classes include weighted least squares with ellipsoidal constraints, and quadratic minimization with binary constraints. We discuss examples which demonstrate that our optimality conditions can effectively be used for identifying global minimizers of certain multi-extremal non-convex quadratic optimization problems. The work of Z. Y. Wu was carried out while the author was at the Department of Applied Mathematics, University of New South Wales, Sydney, Australia.  相似文献   

5.
In this paper, we first establish some sufficient and some necessary global optimality conditions for quadratic integer programming problems. Then we present a new local optimization method for quadratic integer programming problems according to its necessary global optimality conditions. A new global optimization method is proposed by combining its sufficient global optimality conditions, local optimization method and an auxiliary function. The numerical examples are also presented to show that the proposed optimization methods for quadratic integer programming problems are very efficient and stable.  相似文献   

6.
In this paper, we study the quadratic model updating problems by using symmetric low‐rank correcting, which incorporates the measured model data into the analytical quadratic model to produce an adjusted model that matches the experimental model data, and minimizes the distance between the analytical and updated models. We give a necessary and sufficient condition on the existence of solutions to the symmetric low‐rank correcting problems under some mild conditions, and propose two algorithms for finding approximate solutions to the corresponding optimization problems. The good performance of the two algorithms is illustrated by numerical examples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper some global optimality conditions for general quadratic {0, 1} programming problems with linear equality constraints are discussed and then some global optimality conditions for quadratic assignment problems (QAP) are presented. A local optimization method for (QAP) is derived according to the necessary global optimality conditions. A global optimization method for (QAP) is presented by combining the sufficient global optimality conditions, the local optimization method and some auxiliary functions. Some numerical examples are given to illustrate the efficiency of the given optimization methods.  相似文献   

8.
The author (1992, 1993) earlier studied the equivalence of a class of 0–1 quadratic programs and their relaxed problems. Thus, a class of combinatorial optimization problems can be solved by solving a class of nonconvex quadratic programs. In this paper, a necessary and sufficient condition for local minima of this class of nonconvex quadratic programs is given; this will be the foundation for study of algorithms.Research supported by Huo Yingdong Educational Foundation '93.  相似文献   

9.
The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the strong second-order sufficient condition for optimality (without any constraint qualification assumptions). We prove a stronger superlinear convergence result than the above, assuming the usual second-order sufficient condition only. In addition, our analysis is carried out in the more general setting of variational problems, for which we introduce a natural extension of sSQP techniques. In the process, we also obtain a new error bound for Karush–Kuhn–Tucker systems for variational problems that holds under an appropriate second-order condition.  相似文献   

10.
In this note we specify a necessary and sufficient condition for global optimality in concave quadratic minimization problems. Using this condition, it follows that, from the perspective of worst-case complexity of concave quadratic problems, the difference between local and global optimality conditions is not as large as in general. As an essential ingredient, we here use the-subdifferential calculus via an approach of Hiriart-Urruty and Lemarechal (1990).  相似文献   

11.
We consider the class of quadratically-constrained quadratic-programming methods in the framework extended from optimization to more general variational problems. Previously, in the optimization case, Anitescu (SIAM J. Optim. 12, 949–978, 2002) showed superlinear convergence of the primal sequence under the Mangasarian-Fromovitz constraint qualification and the quadratic growth condition. Quadratic convergence of the primal-dual sequence was established by Fukushima, Luo and Tseng (SIAM J. Optim. 13, 1098–1119, 2003) under the assumption of convexity, the Slater constraint qualification, and a strong second-order sufficient condition. We obtain a new local convergence result, which complements the above (it is neither stronger nor weaker): we prove primal-dual quadratic convergence under the linear independence constraint qualification, strict complementarity, and a second-order sufficiency condition. Additionally, our results apply to variational problems beyond the optimization case. Finally, we provide a necessary and sufficient condition for superlinear convergence of the primal sequence under a Dennis-Moré type condition. Research of the second author is partially supported by CNPq Grants 300734/95-6 and 471780/2003-0, by PRONEX–Optimization, and by FAPERJ.  相似文献   

12.
In this paper, we investigate a constrained optimization problem with a quadratic cost functional and two quadratic equality constraints. It is assumed that the cost functional is positive definite and that the constraints are both feasible and regular (but otherwise they are unrestricted quadratic functions). Thus, the existence of a global constrained minimum is assured. We develop a necessary and sufficient condition that completely characterizes the global minimum cost. Such a condition is of essential importance in iterative numerical methods for solving the constrained minimization problem, because it readily distinguishes between local minima and global minima and thus provides a stopping criterion for the computation. The result is similar to one obtained previously by the authors. In the previous result, we gave a characterization of the global minimum of a constrained quadratic minimization problem in which the cost functional was an arbitrary quadratic functional (as opposed to positive-definite here) and the constraints were at least positive-semidefinite quadratic functions (as opposed to essentially unrestricted here).  相似文献   

13.
In this paper, we establish global optimality conditions for quadratic optimization problems with quadratic equality and bivalent constraints. We first present a necessary and sufficient condition for a global minimizer of quadratic optimization problems with quadratic equality and bivalent constraints. Then we examine situations where this optimality condition is equivalent to checking the positive semidefiniteness of a related matrix, and so, can be verified in polynomial time by using elementary eigenvalues decomposition techniques. As a consequence, we also present simple sufficient global optimality conditions, which can be verified by solving a linear matrix inequality problem, extending several known sufficient optimality conditions in the existing literature.  相似文献   

14.
In this paper, a new variable reduction technique is presented for general integer quadratic programming problem (GP), under which some variables of (GP) can be fixed at zero without sacrificing optimality. A sufficient condition and a necessary condition for the identification of dominated terms are provided. By comparing the given data of the problem and the upper bound of the variables, if they meet certain conditions, some variables can be fixed at zero. We report a computational study to demonstrate the efficacy of the proposed technique in solving general integer quadratic programming problems. Furthermore, we discuss separable integer quadratic programming problems in a simpler and clearer form.  相似文献   

15.
A counterexample is given to show that a previously proposed sufficient condition for a local minimum of a class of nonconvex quadratic programs is not correct. This class of problems arises in combinatorial optimization. The problem with the original proof is pointed out. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

16.
In this paper we prove a sufficient condition that a strong local minimizer of a bounded quadratic program is the unique global minimizer. This sufficient condition can be verified computationally by solving a linear and a convex quadratic program and can be used as a quality test for local minimizers found by standard indefinite quadratic programming routines.Part of this work was done while the author was at the University of Wisconsin-Madison.  相似文献   

17.
In this paper, we present a necessary and sufficient condition for a zero duality gap between a primal optimization problem and its generalized augmented Lagrangian dual problems. The condition is mainly expressed in the form of the lower semicontinuity of a perturbation function at the origin. For a constrained optimization problem, a general equivalence is established for zero duality gap properties defined by a general nonlinear Lagrangian dual problem and a generalized augmented Lagrangian dual problem, respectively. For a constrained optimization problem with both equality and inequality constraints, we prove that first-order and second-order necessary optimality conditions of the augmented Lagrangian problems with a convex quadratic augmenting function converge to that of the original constrained program. For a mathematical program with only equality constraints, we show that the second-order necessary conditions of general augmented Lagrangian problems with a convex augmenting function converge to that of the original constrained program.This research is supported by the Research Grants Council of Hong Kong (PolyU B-Q359.)  相似文献   

18.
In this paper, we present sufficient global optimality conditions for weakly convex minimization problems using abstract convex analysis theory. By introducing (L,X)-subdifferentials of weakly convex functions using a class of quadratic functions, we first obtain some sufficient conditions for global optimization problems with weakly convex objective functions and weakly convex inequality and equality constraints. Some sufficient optimality conditions for problems with additional box constraints and bivalent constraints are then derived.   相似文献   

19.
We present an inexact spectral bundle method for solving convex quadratic semidefinite optimization problems. This method is a first-order method, hence requires much less computational cost in each iteration than second-order approaches such as interior-point methods. In each iteration of our method, we solve an eigenvalue minimization problem inexactly, and solve a small convex quadratic semidefinite program as a subproblem. We give a proof of the global convergence of this method using techniques from the analysis of the standard bundle method, and provide a global error bound under a Slater type condition for the problem in question. Numerical experiments with matrices of order up to 3000 are performed, and the computational results establish the effectiveness of this method.  相似文献   

20.
The paper deals with strictly pseudoconvex quadratic functions on open convex sets. It presents second-order conditions in terms of an extended Hessian and in terms of bordered determinants. All of the conditions are both necessary and sufficient.The author wishes to thank Professor M. Avriel, visiting Stanford University, for helpful discussions. He is also grateful to Professor R. W. Cottle, Stanford University, for his suggestions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号