首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, efficient and eco‐friendly procedure has been developed using Cu(II) immobilized on guanidinated epibromohydrin‐functionalized γ‐Fe2O3@TiO2 (γ‐Fe2O3@TiO2‐EG‐Cu(II)) for the synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles, via the condensation reactions of various aldehydes with benzil and ammonium acetate or ammonium acetate and amines, under solvent‐free conditions. High‐resolution transmission electron microscopy analysis of this catalyst clearly affirmed the formation of a γ‐Fe2O3 core and a TiO2 shell, with mean sizes of about 10–20 and 5–10 nm, respectively. These data were in very good agreement with X‐ray crystallographic measurements (13 and 7 nm). Moreover, magnetization measurements revealed that both γ‐Fe2O3@TiO2 and γ‐Fe2O3@TiO2‐EG‐Cu(II) had superparamagnetic behaviour with saturation magnetization of 23.79 and 22.12 emu g?1, respectively. γ‐Fe2O3@TiO2‐EG‐Cu(II) was found to be a green and highly efficient nanocatalyst, which could be easily handled, recovered and reused several times without significant loss of its activity. The scope of the presented methodology is quite broad; a variety of aldehydes as well as amines have been shown to be viable substrates. A mechanism for the cyclocondensation reaction has also been proposed.  相似文献   

2.
Bis-imino Cu(II) complex (CuLAn2), in which the imine ligand (HLAn) acts as a bidentate chelating ligand, was synthesized. The catalytic potential of the inorganic-organocatalyst was studied homogeneously and heterogeneously in the oxidation of aniline and 2-aminopyridine by H2O2 or tBuOOH. Two heterogeneous inorganic-organocatalysts, CuLAn2@Fe3O4 and CuLAn2@SiO2@Fe3O4, were synthesized by the successful immobilization of CuLAn2 on the Fe3O4 surface and the composited Fe3O4 with SiO2, respectively. The heterogeneous structure of those inorganic-organocatalysts was confirmed using Fourier-transform infrared, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy, and magnetic properties. The adsorption–desorption isotherms revealed respectable adsorption parameters (SBET, Vp, and rp). All catalysts exhibited high potential in the oxidation of aniline (with phenylhydroxylamine as the main product) and good potential in the oxidation of 2-aminopyridine, in the first attempt (with 2-nitropyridine-N-oxide and 2-nitrosopyridine-N-oxide as main products), at room temperature. Acetonitrile was found to be the best solvent compared to ethanol, dimethyl sulfoxide, chloroform, and water. The homogeneous catalyst exhibited reusability for three times. The heterogeneous catalysts, CuLAn2@Fe3O4 and CuLAn2@SiO2@Fe3O4, were active for five and seven times, respectively. A mechanism was proposed within electron and oxygen transfer processes.  相似文献   

3.
Fe3O4 magnetic nanoparticles (MNPs) were functionalized by aminopropylsilane and reacted with aromatic aldehyde, and Fe3O4‐Si‐[CH2]3‐N=CH‐Aryl and Fe3O4‐Si‐(CH2)3‐NH‐CH2‐Aryl MNPs were prepared as novel magnetic nanocatalysts. Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM) were used to identify the MNPs. The catalytic activity of the MNPs was evaluated in the one‐pot synthesis of some novel poly‐substituted pyridine derivatives.  相似文献   

4.
The catalytic activity of two magnetic catalysts Fe3O4@SiO2@DOPisatin‐M(II) (M = Ni, Cu) was investigated in the environmentally green H2O2 oxidant‐based oxidation of sulfides to sulfoxides and oxidative coupling of thiols to disulfides. By using these catalysts, various substrates were successfully converted into their corresponding product. These catalysts could also be reused multiple time without significant loss of activity. The physical and chemical properties of the catalysts were determined using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), energy dispersive X‐ray spectroscopy (EDX) and atomic absorption spectroscopy (AAS).  相似文献   

5.
Fe3O4@SiO2@propyltriethoxysilane@o‐phenylendiamine as an environmentally‐benign functionalized silica‐coated magnetic organometallic nanomaterial has been synthesized and characterized by Fourier transforms infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM) images and energy dispersive X‐ray (EDX) and vibrating sample magnetometer (VSM) analyses. Then, its catalytic activity was investigated for the one‐pot three‐component condensation reaction between dimedone, malononitrile and various substituted aromatic aldehydes to afford the corresponding 2‐amino‐4H‐chromene derivatives under mild reaction conditions. This nanocatalyst can be easily recovered from the reaction mixture by using a magnet and reused for at least five times without significant decrease in catalytic activity.  相似文献   

6.
Cu(II) immobilized on Fe3O4–diethylenetriamine was designed as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of 2,3‐dihydroquinazolin‐4(1H )‐ones and the oxidative coupling of thiols. The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and atomic absorption spectroscopy. Simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst with unaltered activity make our protocol a green and feasible synthetic strategy.  相似文献   

7.
The efficient synthesis of novel spiro[indeno[1,2‐b]quinoxaline derivatives via the four‐component condensation of amines, ninhydrin, isatoic anhydride, and о‐phenylenediamine derivatives catalyzed by ( 3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) supported on γ‐Fe2O3 as novel heterogenous magnetic nanocatalyst was described. The novel nanocatalyst was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), vibrating sample magnetometry (VSM), Field Emission Scanning Electron Microscopy (FE‐SEM), and thermal analysis (TGA‐DTG). The nanoparticles covered by (3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) showed enhanced catalytic performance in the preparation of spiro[indeno[1,2‐b]quinoxaline derivatives in excellent yields. Moreover, this method showed several advantages such as mild conditions, high yields, easy work‐up, and being environmentally friendly. The catalyst can be easily separated from the reaction mixture by an external magnet, recycled, and reused several times without a noticeable decrease in catalytic activity.  相似文献   

8.
A simple and efficient procedure has been developed for the synthesis of biologically relevant 2‐substituted benzimidazoles through a one‐pot condensation of o‐phenylenediamines with aryl aldehydes catalysed by iron oxide magnetic nanoparticles (Fe3O4 MNPs) in short reaction times with excellent yields. In the present study, Fe3O4 MNPs synthesized in a green manner using aqueous extract of white tea (Camelia sinensis) (Wt‐Fe3O4 MNPs) were applied as a magnetically separable heterogeneous nanocatalyst to synthesize 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole which has potential application in pharmacology and biological systems. Fourier transform infrared and NMR spectroscopies were used to characterize the 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole. In vitro cytotoxicity studies on MOLT‐4 cells showed a dose‐dependent toxicity with non‐toxic effect of 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole, up to a concentration of 0.147 µM. The green synthesized Wt‐Fe3O4 MNPs as recyclable nanocatalyst could be used for further research on the synthesis of therapeutic materials, particularly in nanomedicine, to assist in the treatment of cancer.  相似文献   

9.
An effective approach of one‐pot catalytic Strecker reaction between aromatic aldehydes, aniline or toluidine and trimethylsilyl cyanide in the presence of amine‐functionalized Fe3O4@SiO2 nanoparticles grafted with gallic acid (GA) as a powerful catalyst was developed. The fabricated reusable catalyst demonstrated high efficiency in the synthesis of α‐aminonitriles along with facile work‐up procedure. Fe3O4@SiO2‐NH2‐GA was characterized by Fourier transform‐infrared spectroscopy, scanning electron microscopy image, vibrating‐sample magnetometer curve, energy‐dispersive X‐ray analysis and thermogravimetric analysis.  相似文献   

10.
Octakis[3‐(3‐aminopropyltriethoxysilane)propyl]octasilsesquioxane (APTPOSS) as a polyhedral oligomeric silsesquioxane derivative was prepared and used as a pioneer reagent to obtain a novel core–shell composite using magnetic iron oxide nanoparticles as the core and the inorganic–organic hybrid polyhedral oligomeric silsesquioxane as the shell. Fe3O4@SiO2/APTPOSS were confirmed using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, dynamic light scattering, thermogravimetric analysis, X‐ray diffraction and vibrating sample magnetometry. The inorganic–organic hybrid polyhedral oligomeric silsesquioxane magnetic nanoparticles were used as an efficient new heterogeneous catalyst for the one‐pot three‐component synthesis of 1,3‐thiazolidin‐4‐ones under solvent‐free conditions. Moreover, these nanoparticles could be easily separated using an external magnet and then reused several times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
CuII immobilized on aminated ferrite nanoparticles by 2‐aminoethyl dihydrogen phosphate (Fe3O4@AEPH2‐CuII) was prepared and characterized using FT‐IR, TGA, TEM, EDX, VSM, XRD, CHN and ICP techniques. The easily prepared heterogeneous nanocatalyst demonstrated a significant catalytic performance for the transformation of aldoximes to nitriles that is far superior to previously reported methods. The reaction allows for the conversion of a wide variety of aldoximes including aromatic, aliphatic and heterocyclic aldoximes in good to excellent yields (50–98%). High efficiency, mild reaction conditions, easy work‐up, operational simplicity, simple purification of products and safe handling of the catalyst are important advantages of this method. In addition, the environmentally benign heterogeneous nanocatalyst can be easily recovered from reaction mixtures using an external magnet and reused several times without any loss of activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Novel Pd nanoparticles were prepared in five successive stages: 1) preparation of the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs), 2) coating of Fe3O4 MNPs with SiO2 (Fe3O4@SiO2), 3) functionalization of Fe3O4@SiO2 with 3‐chloropropyltrimethoxy‐ silane (CPTMS) ligand (Fe3O4@SiO2@CPTMS), 4) further functionalization with 3,5‐diamino‐1,2,4‐triazole (DAT) ligand (Fe3O4@SiO2@CPTMS @DAT), and 5) the complexation of Fe3O4@SiO2@CPTMS@DAT with PdCl2 (Fe3O4@SiO2@CPTMS@ DAT@Pd). Then, the obtained Pd nano‐catalyst characterized by different methods such as the elemental analysis (CHN), FT‐IR, XRD, EDX, SEM, TEM, TG‐DTA and VSM. Finally, the Pd catalyst was applied for the synthesis of various 2‐imino‐3‐phenyl‐2,3‐dihydrobenzo[d]oxazol‐5‐ols.  相似文献   

13.
Superparamagnetic nanoparticles of modified vitamin B3 (Fe3O4@Niacin) represent a new, efficient and green biocatalyst for the one‐pot synthesis of 2‐amino‐3‐cyanopyridine derivatives via four‐component condensation reaction between aldehydes, ketones, malononitrile, and ammonium acetate under microwave irradiation in water. This new magnetic organocatalyst was easily isolated from the reaction mixture by magnetic decantation using an external magnet and reused at least six times without significant degradation in the activity. The catalyst was fully characterized by FT‐IR, XRD, SEM, VSM, UV–Vis, DLS and EDS. Excellent yield, very short reaction time (7–10 min), operational simplicity, easy work‐up procedure, avoidance of hazardous or toxic catalysts and organic solvents are the main advantages of this green methodology which makes it more economic than the other conventional methods.  相似文献   

14.
《中国化学会会志》2018,65(8):960-969
In the present study, Fe2+ and Ni2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 (γ‐Fe2O3@HAp‐Fe2+ and γ‐Fe2O3@HAp‐Ni2+) with a high surface area has been synthesized and characterized by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), and scanning electron microscope (SEM) techniques. Then, γ‐Fe2O3@HAp‐Fe2+ and γ‐Fe2O3@HAp‐Ni2+ were used as a new and magnetically recoverable nano catalyst for the selective oxidation of sulfides to sulfoxides with 33% aqueous H2O2 (0.5 mL) as an oxidant at room temperature in good to excellent yields and short reaction time. Nontoxicity of reagent, mild reaction condition, inexpensive and high catalytic activity, simple experimental procedure, short period of conversion and excellent yields, and ease of recovery from the reaction mixture using an external magnet are the advantages of the present method.  相似文献   

15.
Uniform SiO2 nanoparticles were successfully prepared from Equisetum arvense obtained from the north‐east of Iran. Then, surface modification of the extracted nanoparticles was performed with a methanol solution of H3PW12O40 via wet impregnation method. The prepared nanocatalyst was characterized by XRD, FESEM, ICP, UV–Vis, and FT‐IR spectroscopy. The supported heterogeneous nanocatalyst was successfully applied as a Lewis/Bronsted acid catalyst in the synthesis of a series of substituted 4H–chromenes via condensation of aromatic aldehydes, malononitrile, and 4‐hydroxycoumarin under solventless conditions with fine yields in appropriately short times.  相似文献   

16.
The catalytic performance of the superparamagnetic nanocatalyst Fe3O4@SiO2@Sulfated boric acid as a green, recyclable, and acidic solid catalyst in the synthesis of chromeno[4,3,2‐de][1,6]naphthyridine derivatives has been studied. Chromeno[4,3,2‐de][1,6]naphthyridine derivatives via a pseudo four‐component reaction from aromatic aldehydes (1 mmol), malononitrile (2 mmol), and 2′‐hydroxyacetophenone in the presence of Fe3O4@SiO2@Sulfated boric acid (0.004 g) as a nanocatalyst in 3 mL of water as a green solvent at 80°C has been synthesized. The advantages of this method are higher product yields in shorter reaction times, easy recyclability and reusability of the catalyst, and easy work‐up procedures. The nanocatalyst was reused at least six times. The nanocatalyst retained its stability in the reaction, and after reusability, it was separated easily from the reaction by an external magnet.  相似文献   

17.
A facile strategy is reported for the fabrication of Pt‐loaded core–shell nanocomposite ellipsoids (Fe2O3‐Pt@DSL) consisting of ellipsoidal Fe2O3 cores, double‐layered La2O3 shells and deposited Pt nanoparticles (NPs). The formation of the doubled‐shelled structure uses Fe2O3‐Pt@mSiO2 as template sacrificial agent and it involves the re‐deposition of silica and self‐assembly of metal oxide units. The preparation methods of double‐shelled metal oxides avoid repeated coating and etching and could be utilized to fabricate other shaped double‐shelled composites. Characterization results indicated that the Fe2O3‐Pt@DSL nanocomposites possessed mesoporous structure and tunable shell thickness. Moreover, due to the formation of Fe2O3 and La2O3 composites, Pt NPs can also be stabilized via deposition on chemically active oxides with a synergistic effect. Therefore, as a catalyst for the reduction of 4‐nitrophenol, Fe2O3‐Pt@DSL showed superior catalytic activity and reusability due to structural superiority and enhanced composite synergy. Finally, well‐dispersed Pt NPs were encapsulated into the void between the shell layers to construct the Fe2O3‐Pt@DSL‐Pt catalyst.  相似文献   

18.
In this study, the immobilization of sulfonic acid on silica‐layered magnetite was carried out by the reaction of ClSO3H with silica‐layered magnetite. The prepared magnetic nanoparticles of Fe3O4@SiO2‐SO3H were then characterized using scanning electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and transmission electron microscopy. The sulfonated nanocomposite exhibited excellent catalytic activity and reusability in the reduction of various aldoximes and ketoximes with NaBH3CN in the presence of ZrCl4. All reactions were carried out under solvent‐free conditions (r.t. or 75–80°C) within 3–70 min to afford amines in high to excellent yields.  相似文献   

19.
Polypyrrole (PPY)/Fe3O4/CNT has been synthesized and characterized by FT‐IR, TEM and SEM techniques and its catalytic activity has been evaluated in the synthesis of several series of pyran derivatives. Tetrahydrobenzo[b]pyranes, 4H‐pyran‐3‐carboxylates, 4H,5H‐pyrano[3,2‐c]chromenes and dihydropyrano[2,3‐c]pyrazoles have been successfully prepared from one‐pot three‐component condensation of aldehyde, malononitrile and active methylene‐containing compounds (dimedone /ethyl acetoacetate/4‐hydroxycoumarin/3‐methyl‐2‐pyrazoline‐5‐one) using PPY/Fe3O4/CNT as a new and reusable heterogeneous catalyst. The present method offer several advantages such as; high yields of products, short reaction times, easy work‐up procedure and easy separation of the catalyst from the reaction mixture due to its magnetic character. Furthermore, chemoselective synthesis of bis‐benzo[b]pyran from terephthalaldehyde can be achieved by this method.  相似文献   

20.
A simple, green and efficient protocol for the one‐pot four‐component synthesis of pyrano[2,3‐c ]pyrazole derivatives produced from reaction between aryl aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate in the presence of nano magnetic piperidinium benzene‐1,3‐disulfonate was synthesized in water at 60 °C. The Fe3O4@SiO2 nanoparticle‐supported IL was designed and synthesized. The present process offers advantages such as clean reaction, short reaction time, good to excellent yield, easy purification and easy recoverable catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号