首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thomas LC  Weichmann W 《Talanta》1992,39(3):201-206
Dual-isotope internal standard measurements by GC/MS which mimic isotope dilution may suffer from non-linear response relations, irreproducibilities or unduly large uncertainties because of variations in ionization efficiences for the respective isotopic forms in the MS source. Such variations may sometimes be avoided via extensive pretreatments, high resolution GC separations and careful control of instrumental parameters. However, an alternative approach is feasible which instead exploits advantages of decreasing GC resolution. By forcing both forms of each analyte to coelute, their relative ionization efficiencies in the MS source should be nearly constant, thereby effectively allowing for constant relative sensitivities over several orders of magnitude in concentration. Thus, constant relative response ratios, required for internal standard calculations, may be attained as a consequence of dramatically lowered GC resolution. Coelution results described herein show linear relative sensitivity relations over much broader ranges than observed for corresponding conventional calibrations with separated components. Coelution methods for dual-isotope GC/MS determinations are compatible with internal standard calculations and thereby offer a powerful alternative to the conventional approach of requiring expensive and labor-intensive additional pretreatments and separations to assure resolution of measured eluates.  相似文献   

2.
Gas chromatography (GC) and mass spectrometry (MS) are by far the most important analytical techniques in the perfume industry. Both perfume houses (the suppliers) and the home and personal-care companies (the clients) rely primarily on GC and GC-MS for unraveling the composition of perfumes (i.e. perfume formulation), quality control, competitor analysis and trace analysis on substrates and in the headspace. State-of-the-art perfume formulation is based on perfume-specific Kovats Index (KI) and MS databases. By applying FID (flame-ionization detector) response-correction factors, the accuracy of the perfume-formulation process can be further improved. Because of the complexity of perfumes, use is made of GC columns and conditions that offer maximum resolution rather than minimum analysis time. Mass-spectral deconvolution tools can be very useful in identifying perfume ingredients from GC-MS data in cases of co-elution or strong matrix interference. By applying the MS detector in the selected ion monitoring (SIM) mode, GC-MS is very suitable for trace analysis of perfume ingredients, thus enabling the study of perfume efficacy during use of home and personal-care products. Recent developments in the field of comprehensive GC (i.e. GC×GC) also seem very promising for perfume analysis.  相似文献   

3.
The chromatographic and mass spectrometric (MS) behaviors of 49 polybrominated diphenylether (PBDE) homologues toward various techniques is investigated. Special attention is paid to chromatographic separation, ionization processes, and signal acquisition modes. Different liquid chromatographic (LC) separation systems and gas chromatographic (GC) temperature program parameters are studied. For LC-MS experiments, the ionization efficiencies of electrospray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization (APPI) are evaluated. For GC-MS experiments, negative chemical ionization with ammonia as reagent gas as well as negative and positive electron impact (EI) ionization are studied. Thus, fragmentation pathways of PBDEs are investigated, with the main objective being to determine the sensitivity/specificity balance of each tested technique with respect to their potential respective application (parent compound focusing, metabolite identification, and screening of analogue compounds). Finally, performances of the different tested techniques are compared and evaluated in terms of detection limits on standard solutions for each homologue group. In terms of ionization, EI remains the best compromise between sensitivity and specificity with possible complementary applications in MS-MS and high-resolution MS. Nevertheless, APPI appears to be a promising alternative.  相似文献   

4.
Liquid chromatography coupled to orthogonal acceleration time-of-flight mass spectrometry (LC/TOF) provides an attractive alternative to liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS) in the field of multiresidue analysis. The sensitivity and selectivity of LC/TOF approach those of LC/MS/MS. TOF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of commercial TOF instruments ranging from 10 000 to 18 000 full width at half maximum (FWHM) is not, however, sufficient to completely exclude the problem of isobaric interferences (co-elution of analyte ions with matrix compounds of very similar mass). Due to the required data storage capacity, TOF raw data is commonly centroided before being electronically stored. However, centroiding can lead to a loss of data quality. The co-elution of a low intensity analyte peak with an isobaric, high intensity matrix compound can cause problems. Some centroiding algorithms might not be capable of deconvoluting such partially merged signals, leading to incorrect centroids.Co-elution of isobaric compounds has been deliberately simulated by injecting diluted binary mixtures of isobaric model substances at various relative intensities. Depending on the mass differences between the two isobaric compounds and the resolution provided by the TOF instrument, significant deviations in exact mass measurements and signal intensities were observed. The extraction of a reconstructed ion chromatogram based on very narrow mass windows can even result in the complete loss of the analyte signal. Guidelines have been proposed to avoid such problems. The use of sub-2 microm HPLC packing materials is recommended to improve chromatographic resolution and to reduce the risk of co-elution. The width of the extraction mass windows for reconstructed ion chromatograms should be defined according to the resolution of the TOF instrument. Alternative approaches include the spiking of the sample with appropriate analyte concentrations. Furthermore, enhanced software, capable of deconvoluting partially merged mass peaks, may become available.  相似文献   

5.
The headspace compositions of 13 pepper and peppercorn samples of different species, colloquially also referred to as pepper, were analyzed, and more than 300 compounds were tentatively characterized by means of comprehensive two-dimensional gas chromatography in tandem with flame ionization detection, quadrupole mass spectrometric detection and time-of-flight mass spectrometric detection (GC x GC-FID, GC x GC/qMS and GC x GC/TOFMS, respectively). The analysis of volatile organic compounds (VOCs) was performed after solid-phase microextraction (SPME) using a 75-microm PDMS/DVB fibre. Fingerprint comparison between the three techniques permitted peaks to be assigned in the GC x GC-FID experiment based on the analogous MS analysis, taking into account retention shifts arising from method variations. When using GC x GC/TOFMS, about five times more peaks were identified than in GC x GC/qMS. Retention indices for all peaks were calculated in the bi-dimensional column set comprising of a 5% phenyl polysilphenylene-siloxane primary column and a polyethylene glycol second column. The spectra obtained by both mass detection techniques (qMS and TOFMS) give very similar results when spectral library searching was performed. The majority of the identified compounds eluted as pure components as a result of high-resolution GC x GC separations, which significantly reduces co-elution, and therefore increases the likelihood that pure spectra can be obtained. The differences between TOFMS and qMS (in fast scanning mode) spectra were generally small. Whilst spectral quality and relative ion ratios across a narrow peak (e.g. w(b) approximately 100-150 ms) do vary more for the fast peaks obtained in GC x GC/qMS operation, than with TOFMS, in general adequate spectral matching with the library can be achieved.  相似文献   

6.
The use of gas chromatography (GC)-mass spectrometry (MS), GC-time-of-flight MS (TOFMS), comprehensive two-dimensional GC (GCxGC)-flame ionization detection (FID), and GCxGC-TOFMS is discussed for the characterization of the eight important representative components, including Z-alpha-santalol, epi-alpha-bisabolol, Z-alpha-trans-bergamotol, epi-beta-santalol, Z-beta-santalol, E,E-farnesol, Z-nuciferol, and Z-lanceol, in the oil of west Australian sandalwood (Santalum spicatum). Single-column GC-MS lacks the resolving power to separate all of the listed components as pure peaks and allow precise analytical measurement of individual component abundances. With enhanced peak resolution capabilities in GCxGC, these components are sufficiently well resolved to be quantitated using flame ionization detection, following initial characterization of components by using GCxGC-TOFMS.  相似文献   

7.
Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI). Cold EI, as a main mode, provides enhanced molecular ions combined with an effective library sample identification, which is supplemented and complemented by a powerful isotope abundance analysis method and software. The range of low-volatility and thermally labile compounds amenable for analysis is significantly increased owing to the use of the contact-free, fly-through ion source and the ability to lower sample elution temperatures through the use of high column carrier gas flow rates. Effective, fast GC-MS is enabled particularly owing to the possible use of high column flow rates and improved system selectivity in view of the enhancement of the molecular ion. This fast GC-MS with SMB can be further improved via the added selectivity of MS-MS, which by itself benefits from the enhancement of the molecular ion, the most suitable parent ion for MS-MS. Supersonic GC-MS is characterized by low limits of detection (LOD), and its sensitivity is superior to that of standard GC-MS, particularly for samples that are hard for analysis. The GC separation of the Supersonic GC-MS can be improved with pulsed flow modulation (PFM) GC x GC-MS. Electron ionization LC-MS with SMB can also be combined with the Supersonic GC-MS, with fast and easy switching between these two modes of operation.  相似文献   

8.
Several novel synthetic organic compounds were successfully analyzed with a unique type of GC-MS titled Supersonic GC-MS following a failure in their analysis with standard GC-MS. Supersonic GC-MS is based on interfacing GC and MS with a supersonic molecular beam (SMB) and on electron ionization of sample compounds as vibrationally cold molecules while in the SMB, or by cluster chemical ionization. The analyses of novel synthetic organic compounds significantly benefited from the extended range of compounds amenable to analyses with the Supersonic GC-MS. The Supersonic GC-MS enabled the analysis of thermally labile compounds that usually degrade in the GC injector, column and/or ion source. Due to the high carrier gas flow rate at the injector liner and column these compounds eluted without degradation at significantly lower elution temperatures and the use of fly-through EI ion source eliminated any sample degradation at the ion source. The cold EI feature of providing trustworthy enhanced molecular ion (M+), complemented by its optional further confirmation with cluster CI was highly valued by the synthetic organic chemists that were served by the Supersonic GC-MS. Furthermore, the provision of extended mass spectral structural, isomer and isotope information combined with short (a few minutes) GC-MS analysis times also proved beneficial for the analysis of unknown synthetic organic compounds. As a result, the synthetic organic chemists were provided with both qualitative and quantitative data on the composition of their synthetic mixture, and could better follow the path of their synthetic chemistry. Ten cases of such analyses are demonstrated in figures and discussed.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) are frequently measured in the atmosphere for air quality assessment, in biological tissues for health-effects monitoring, in sediments and mollusks for environmental monitoring, and in foodstuffs for safety reasons. In contemporary analysis of these complex matrices, gas chromatography (GC), rather than liquid chromatography (LC), is often the preferred approach for separation, identification, and quantification of PAHs, largely because GC generally affords greater selectivity, resolution, and sensitivity than LC. This article reviews modern-day GC and state-of-the-art GC techniques used for the determination of PAHs in environmental samples. Standard test methods are discussed. GC separations of PAHs on a variety of capillary columns are examined, and the properties and uses of selected mass spectrometric (MS) techniques are presented. PAH literature on GC with MS techniques, including chemical ionization, ion-trap MS, time-of-flight MS (TOF-MS), and isotope-ratio mass spectrometry (IRMS), is reviewed. Enhancements to GC, for example large-volume injection, thermal desorption, fast GC, and coupling of GC to LC, are also discussed with regard to the determination of PAHs in an effort to demonstrate the vigor and robustness GC continues to achieve in the analytical sciences.  相似文献   

10.
Summary Applications of high resolution gas chromatography (GC) and mass spectrometry (MS) in pesticide chemistry are demonstrated by pyrethroid photo- and biotransformation studies. Degradation of chrysanthemate pyrethroids (e.g. the natural pyrethrins, allethrin, tetramethrin and cyphenothrin) used as indoor insecticides is investigated by GC-MS using negative chemical ionization (NCI). Ozonolysis results in the formation of carbox-aldehydes as major indoor transformation products. In vitro metabolism of (S)-bioallethrin and the natural pyrethrins by NADPH dependent oxidases is studied using GC-MS with positive chemical ionization (PCI). Interpretation of the PCI mass spectra yields molecular weight and structural information about the metabolites and their derivatives. The photochemistry of novel non-ester pyrethroids with ether or alkane central linkages such as ethofenprox is investigated by electron impact (EI) GC-MS.  相似文献   

11.
The use of gas chromatography coupled to high‐resolution magnetic sector mass spectrometers (GC‐HRMS) is well established for dioxin and furan analysis. However, the use of gas chromatography coupled to triple quadrupole (MS/MS) and time of flight (TOF) mass spectrometers with atmospheric pressure ionization (API) and traditional electron ionization (EI) for dioxin and furan analysis is emerging as a viable alternative to GC‐HRMS screening. These instruments offer greater versatility in the lab for a wider range of compound identification and quantification as well as improved ease of operation. The instruments utilized in this study included 2 API‐MS/MS, 1 traditional EI‐MS/MS, an API‐quadrupole time of flight mass spectrometer (API‐QTOF), and a EI‐high‐resolution TOF (EI‐HRTOF). This study compared these 5 instruments to a GC‐HRMS using method detection limit (MDLs) samples for dioxin and furan analysis. Each instrument demonstrated acceptable MDL values for the 17 chlorinated dioxin and furans studied. The API‐MS/MS instruments provide the greatest overall improvement in MDL value over the GC‐HRMS with a 1.5 to 2‐fold improvement. The API‐QTOF and EI‐TOF demonstrate slight increases in MDL value as compared with the GC‐HRMS with a 1.5‐fold increase. The 5 instruments studied all demonstrate acceptable MDL values with no MDL for a single congener greater than 5 times that for the GC‐HRMS. All 5 instruments offer a viable alternative to GC‐HRMS for the analysis of dioxins and furans and should be considered when developing new validated methodologies.  相似文献   

12.
13.
We designed and demonstrated the unique abilities of the first gas chromatography–molecular rotational resonance spectrometer (GC‐MRR). While broadly and routinely applicable, its capabilities can exceed those of high‐resolution MS and NMR spectroscopy in terms of selectivity, resolution, and compound identification. A series of 24 isotopologues and isotopomers of five organic compounds are separated, identified, and quantified in a single run. Natural isotopic abundances of mixtures of compounds containing chlorine, bromine, and sulfur heteroatoms are easily determined. MRR detection provides the added high specificity for these selective gas‐phase separations. GC‐MRR is shown to be ideal for compound‐specific isotope analysis (CSIA). Different bacterial cultures and groundwater were shown to have contrasting isotopic selectivities for common organic compounds. The ease of such GC‐MRR measurements may initiate a new era in biosynthetic/degradation and geochemical isotopic compound studies.  相似文献   

14.
We successfully detected halogenated compounds from several kinds of environmental samples by using a comprehensive two-dimensional gas chromatograph coupled with a tandem mass spectrometer (GC×GC-MS/MS). For the global detection of organohalogens, fly ash sample extracts were directly measured without any cleanup process. The global and selective detection of halogenated compounds was achieved by neutral loss scans of chlorine, bromine and/or fluorine using an MS/MS. It was also possible to search for and identify compounds using two-dimensional mass chromatograms and mass profiles obtained from measurements of the same sample with a GC×GC-high resolution time-of-flight mass spectrometer (HRTofMS) under the same conditions as those used for the GC×GC-MS/MS. In this study, novel software tools were also developed to help find target (halogenated) compounds in the data provided by a GC×GC-HRTofMS. As a result, many dioxin and polychlorinated biphenyl congeners and many other halogenated compounds were found in fly ash extract and sediment samples. By extracting the desired information, which concerned organohalogens in this study, from huge quantities of data with the GC×GC-HRTofMS, we reveal the possibility of realizing the total global detection of compounds with one GC measurement of a sample without any pre-treatment.  相似文献   

15.
A new approach of flow modulation comprehensive two-dimensional gas chromatography-mass spectrometry (GC x GC-MS) with supersonic molecular beam (SMB) and a quadrupole mass analyzer is presented. Flow modulation uniquely enables GC x GC-MS to be achieved even with the limited scan speed of quadrupole MS, and its 20 ml/min column flow rate is handled, splitless, by the SMB interface. Flow modulation GC x GC-SMB-MS shares all the major benefits of GC x GC and combines them with GC-MS including: (a) increased GC separation capability; (b) improved sensitivity via narrower GC peaks; (c) improved sensitivity through reduced matrix interference and chemical noise; (d) polarity and functional group sample information via the order of elution from the second polar column. In addition, GC x GC-SMB-MS is uniquely characterized by the features of GC-MS with SMB of enhanced and trustworthy molecular ion plus isotope abundance analysis (IAA) for improved sample identification and fast fly-through ion source response time. The combination of flow modulation GC x GC with GC-MS with SMB (supersonic GC-MS) was explored with complex matrices such as diesel fuel analysis and pesticide analysis in agricultural products.  相似文献   

16.
提出了18种食品基质中丙环唑残留量的气相色谱-质谱联用分析方法。样品中丙环唑利用乙腈或乙酸乙酯提取,C18和活性炭串联固相萃取柱净化,采用DB-1701弹性毛细管色谱柱进行分离。采用气相色谱-质谱电子轰击电离源和选择离子监测模式进行测定。在0.02~5.0mg.L-1范围内丙环唑标准溶液的峰面积与浓度呈线性关系(r=0.9995),在0.01,0.02,0.05mg.kg-13个添加水平下丙环唑的回收率在70%~115%之间,相对标准偏差(n=6)小于10.2%,检出限(3S/N)为0.004mg·kg-1。  相似文献   

17.
We report the characterization of a recently introduced hybrid ionization source, matrix-assisted laser desorption electrospray ionization (MALDESI), coupled to a quadrupole Fourier transform ion cyclotron resonance mass spectrometry (QFT-ICR-MS) system. We first demonstrate the ability of MALDESI-QFT-ICR MS to directly analyze and provide high mass measurement accuracy (approximately 1 part-per-million) of a polypeptide using internal calibration. Second, we show the potential of MALDESI-QFT-ICR MS for the top-down characterization of multiply charged polypeptide cations. Finally, we demonstrate sub-femtomole detection limits in MALDESI-QFT-ICR MS using a combination of naturally occurring peptides and their respective stable isotope labeled forms. The results presented herein demonstrate the feasibility of several potential applications for MALDESI-QFT-ICR MS for the direct analysis of intact biological molecules.  相似文献   

18.
Atmospheric pressure (AP) GC/MS was first introduced by Horning et al. [E.C. Horning, M.G. Horning, D.I. Carroll, I. Dzidic, R.N. Stillwell, Anal. Chem. 45 (1973) 936] using 63Ni as a beta-emitter for ionization. Because, at the time special instrumentation was required, the technique was only applied with consistency to negative ion environmental studies where high sensitivity was required [T. Kinouchi, A.T.L. Miranda, L.G. Rushing, F.A. Beland, W.A. Korfmacher, J. High Resolut. Chromatogr., Chromatogr. Commun. 13 (1990) 281]. Currently, AP ion sources are commonly available on LC/MS instruments and recently a method was reported for converting an AP-LC/MS ion source to a combination AP-LC/MS:GC/MS source [C.N. McEwen, R.G. McKay, J. Am. Soc. Mass Spectrom. 16 (2005) 1730]. Here, we report the use of atmospheric pressure photoionization (APPI) with GC/MS and compare this to AP chemical ionization (APCI) GC/MS and electron ionization (EI) GC/MS. Using a nitrogen purge gas, we observe excellent chromatographic resolution and abundant molecular M+ and MH+ ions as well as structurally significant fragment ions. Comparison of a 9.8 eV UV lamp with a 10.6 eV lamp, as expected, shows that the higher energy lamp gives more universal ionization and more fragment ions than the lower energy lamp. While there are clear differences in the fragment ions observed by APPI-MS versus EI-MS, there are also similarities. As might be expected from the ionization mechanism, APPI ionization is similar to low energy EI. These odd electron fragment ions are useful in identifying unknown compounds by comparison to mass spectra in computer libraries.  相似文献   

19.
An analytical procedure is described for the fractionation of organic compounds present in environmental samples and the determination of nitro polyaromatic hydrocarbons (nitro-PAHs). Both low and high resolution liquid chromatography are employed for the prefractionation of the soluble organic fraction (SOF) extracted from particulate matter or gaseous pollutants collected on adsorption traps. High resolution gas chromatography is used to analyze four fractions containing alkanes, PAHs, nitro-PAHs, and other polar PAHs. Nitrogen-containing species are separated by GC and detected specifically using an alkali flame (NPD) detector. Flame ionization (FID) detection, GC-MS of positive ions, and negative ion chemical ionization MS of the whole fraction is used for the identification and quantitation of the various components. The composition of SOF extracted from particulate matter emitted from diesel exhausts is elucidated and a large number of nitro-PAHs identified by the combination of the various techniques.  相似文献   

20.
Modification of commercial LC/MS instrumentation to allow both atmospheric pressure (AP) LC/MS and GC/MS is described. Advantages of this additional capability versus LC/MS alone include higher chromatographic resolution in the GC versus LC mode, greater peak capacity for complex mixture analysis, higher sensitivity for a variety of volatile compounds, and the ability to observe compounds of low polarity that are not readily observed in LC/MS. Advantages over conventional GC/MS include the ability to use higher carrier gas flow and shorter columns for passing less volatile materials through the gas chromatograph, selective ionization, and rapid switching between positive and negative ion modes. Other advantages include application of the enhanced capabilities of LC/MS instrumentation to GC/MS analyses such as cone voltage fragmentation, MS(n), high mass resolution, and accurate mass measurement. Limitations of APGC/MS include the inability to observe saturated hydrocarbon and certain other highly nonpolar compounds and less odd-electron fragmentation for computer aided library searching. For some analyses, the limitation related to ionization of highly nonpolar compounds is advantageous, as is the simplified mass spectrum and easy molecular weight identification that results from less fragmentation observed in the AP ionization mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号