首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theasinensins A and D are B,B′-linked dimers of (−)-epigallocatechin 3-O-gallate connected through R and S biphenyl bonds, respectively, and are major constituents of black tea. Enzymatic oxidation of epigallocatechin 3-O-gallate produced dehydrotheasinensin A, and the structure was shown to be equivalent to an o-quinone of theasinensin A. When the aqueous solution of dehydrotheasinensin A was heated, theasinensin D was produced along with galloyl oolongtheanin. On the other hand, dehydrotheasinensin A was converted to theasinensins A and D along with oxidation products in phosphate buffer at pH 6.8 at room temperature. The results strongly suggested that theasinensins in black tea were produced by oxidation-reduction dismutation of dehydrotheasinensin.  相似文献   

2.
KCNE1 is known to modulate the voltage‐gated potassium channel α subunit KCNQ1 to generate slowly activating potassium currents. This potassium channel is essential for the cardiac action potential that mediates a heartbeat as well as the potassium ion homeostasis in the inner ear. Therefore, it is important to know the structure and dynamics of KCNE1 to better understand its modulatory role. Previously, the Sanders group solved the three‐dimensional structure of KCNE1 in LMPG micelles, which yielded a better understanding of this KCNQ1/KCNE1 channel activity. However, research in the Lorigan group showed different structural properties of KCNE1 when incorporated into POPC/POPG lipid bilayers as opposed to LMPG micelles. It is hence necessary to study the structure of KCNE1 in a more native‐like environment such as multi‐lamellar vesicles. In this study, the dynamics of lipid bilayers upon incorporation of the membrane protein KCNE1 were investigated using 31P solid‐state nuclear magnetic resonance (NMR) spectroscopy. Specifically, the protein/lipid interaction was studied at varying molar ratios of protein to lipid content. The static 31P NMR and T1 relaxation time were investigated. The 31P NMR powder spectra indicated significant perturbations of KCNE1 on the phospholipid headgroups of multi‐lamellar vesicles as shown from the changes in the 31P spectral line shape and the chemical shift anisotropy line width. 31P T1 relaxation times were shown to be reversely proportional to the molar ratios of KCNE1 incorporated. The 31P NMR data clearly indicate that KCNE1 interacts with the membrane. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Direct observation of J-couplings remains a challenge in high-resolution solid-state NMR. In some cases, it is possible to use Lee-Goldburg (LG) homonuclear decoupling during rare spin observation in MAS NMR correlation spectroscopy of lipid membranes to obtain J-resolved spectra in the direct dimension. In one simple implementation, a wide line separation-type (13)C-(1)H HETCOR can provide high-resolution (1)H/(13)C spectra, which are J-resolved in both dimensions. Coupling constants, (1)J(HC), obtained from (1)H doublets, can be compared with scaled (1)J(θ)(CH)-values obtained from the (13)C multiplets to assess the LG efficiency and scaling factor. The use of homonuclear decoupling during proton evolution, LG-HETCOR-LG, can provide J-values, at least in the rare spin dimension, and allows measurements in less mobile membrane environments. The LG-decoupled spectroscopic approach is demonstrated on pure dioleoylphosphatidylcholine (DOPC) membranes and used to investigate lipid mixtures of DOPC/cholesterol and DOPC/cholesterol/sphingomyelin.  相似文献   

4.
5.
This paper presents novel measurements and calculations of the olefinic (13)C chemical shift tensor principal values in several metal diene complexes. The experimental values and the calculations show shifts as large as 70 ppm with respect to the values in the parent olefinic compounds. These shifts are highly anisotropic, with the largest ones observed in the less shielded principal components and the smallest ones in the most shielded principal components of the tensor. The orientations of the principal components of the tensors remain, within 10 degrees , at their directions in ethylene and other olefinic compounds. The calculations, performed using the GIAO method and the LanDZ pseudopotential basis set, show good agreement with the experiments, and were used to establish definite evidence for the existence of a Cl-bridge structure in the bicyclo[2.2.1]hepta-2,5-diene (BCHD)dichlororuthenium(II) polymer.  相似文献   

6.
Recent advances in solid‐state nuclear magnetic resonance (NMR) techniques, such as magic angle spinning and high‐power decoupling, have dramatically increased the sensitivity and resolution of NMR. However, these NMR techniques generate extra heat, causing a temperature difference between the sample in the rotor and the variable temperature gas. This extra heating is a particularly crucial problem for hydrated lipid membrane samples. Thus, to develop an NMR thermometer that is suitable for hydrated lipid samples, thulium‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTA) was synthesized and labeled with 13C (i.e., 13C‐TmDOTA) to increase the NMR sensitivity. The complex was mixed with a hydrated lipid membrane, and the system was subjected to solid‐state NMR and differential scanning calorimetric analyses. The physical properties of the lipid bilayer and the quality of the NMR spectra of the membrane were negligibly affected by the presence of 13C‐TmDOTA, and the 13C chemical shift of the complex exhibited a large‐temperature dependence. The results demonstrated that 13C‐TmDOTA could be successfully used as a thermometer to accurately monitor temperature changes induced by 1H decoupling pulses and/or by magic angle spinning and the temperature distribution of the sample inside the rotor. Thus, 13C‐TmDOTA was shown to be a versatile thermometer for hydrated lipid assemblies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Three flavonoids of pharmaceutical importance-baicalein, baicalin, and wogonoside-were isolated from a Chinese medicinal plant Scutellaria baicalensis Georgi and studied by 13C NMR in solution and solid state. Two-dimensional (2D) NMR spectroscopy in the liquid phase and dipolar dephasing (DD) experiments in magic-angle spinning (MAS) spectra enabled the assignment of 13C resonances. The cross-polarization (CP) time constants T(CH) and relaxation times T(H) (1rho) were obtained from the variable-contact time experiments. The principal elements of the 13C chemical shift tensor were determined in the spectra recorded under slow sample spinning (2 kHz) using phase-adjusted spinning sideband (PASS)-2D NMR technique, and were verified by density functional theory gauge-independent atomic orbital (DFT GIAO) calculations of shielding constants. Analysis of the 13C delta(ii) and comparison with shielding parameters calculated for different conformers of compounds 1-3 enabled the selection of the most reliable geometry in the solid phase. In all three compounds, an intramolecular hydrogen bond C5--OH...=C4 is formed; the existence of baicalein and baicalin with 'anticlockwise' orientation of OH groups is more probable.  相似文献   

9.
10.
Chitosan derivatives have been studied widely, but poor solubility in water restricts their applications. In this study, four types of amine‐based chitosan derivatives were prepared and modified further with beta‐cyclodextrin. The sequential microextraction of catechins ((+)‐catechin and (?)‐epigallocatechin gallate) from green tea powder by an optimized solid‐phase extraction method using these four derivatives was investigated. The optimal conditions for the extraction of catechins were 60°C for a 40 min extraction period. The purity and amount of each catechin were determined by high‐performance liquid chromatography. The different amines strengthened the extraction capacity of chitosan. Among the four types of amines, ethylene diamine grafted chitosan beta‐cyclodextrin had the highest extraction capacity to catechins. Therefore, this material was used in the extraction assay, and the standard curves of (+)‐catechin and (?)‐epigallocatechin gallate were linear over the concentration range, 0.25–500 µg/mL, after assaying five data points in duplicate. Solid‐phase extraction with the amino‐based chitosan beta‐cyclodextrin system is a new application of chitosan, which has potential applications in the extraction of bioactive compounds from plant materials or the removal of different impurities from specific extracts.  相似文献   

11.
《Comptes Rendus Chimie》2014,17(4):331-341
In this paper, the preparation and characterization of some novel nanostructured lipid carriers for drug delivery are reported. They are obtained by mixing two solid lipids, cetyl palmitate and glyceryl stearate, with three types of vegetable oils: grape seed oil, St. John's wort oil (Hypericum perforatum oil) and sea buckthorn oil. In order to increase their antioxidant and antimicrobial properties, they are co-loaded with green tea extract by using a modified high shear homogenization technique. Size distribution and polydispersity index of the developed nanostructured lipid carriers determined by the dynamic light scattering, and corroborated with the results obtained by the transmission electron microscopy analysis, confirmed that the structures obtained are at nanoscales. The crystallinity behavior of the prepared nanostructured lipid carriers has been studied by differential scanning calorimetry; zeta potential measurements show that all loaded nanostructures present excellent physical stability. Their antioxidant and antimicrobial properties evaluated by an appropriate in vitro analysis using the chemiluminescence method, and the diffusion disc method, respectively, show that green tea extract could be utilized as a valuable natural source of antioxidant and antimicrobial agent. These new nano-formulations proved to have significant potential for nutritional and pharmaceutical applications.  相似文献   

12.
Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high‐resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic‐angle‐spinning (MAS) solid‐state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating‐frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near‐native conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Poly(aminoimino)heptazine, otherwise known as Liebig's melon, whose composition and structure has been subject to multitudinous speculations, was synthesized from melamine at 630 degrees C under the pressure of ammonia. Electron diffraction, solid-state NMR spectroscopy, and theoretical calculations revealed that the nanocrystalline material exhibits domains well-ordered in two dimensions, thereby allowing the structure solution in projection by electron diffraction. Melon ([C(6)N(7)(NH(2))(NH)](n), plane group p2 gg, a=16.7, b=12.4 A, gamma=90 degrees, Z=4), is composed of layers made up from infinite 1D chains of NH-bridged melem (C(6)N(7)(NH(2))(3)) monomers. The strands adopt a zigzag-type geometry and are tightly linked by hydrogen bonds to give a 2D planar array. The inter-layer distance was determined to be 3.2 A from X-ray powder diffraction. The presence of heptazine building blocks, as well as NH and NH(2) groups was confirmed by (13)C and (15)N solid-state NMR spectroscopy using (15)N-labeled melon. The degree of condensation of the heptazine core was further substantiated by a (15)N direct excitation measurement. Magnetization exchange observed between all (15)N nuclei using a fp-RFDR experiment, together with the CP-MAS data and elemental analysis, suggests that the sample is mainly homogeneous in terms of its basic composition and molecular building blocks. Semiempirical, force field, and DFT/plane wave calculations under periodic boundary conditions corroborate the structure model obtained by electron diffraction. The overall planarity of the layers is confirmed and a good agreement is obtained between the experimental and calculated NMR chemical shift parameters. The polymeric character and thermal stability of melon might render this polymer a pre-stage of g-C(3)N(4) and portend its use as a promising inert material for a variety of applications in materials and surface science.  相似文献   

15.
The MAS solid‐state NMR has been a powerful technique for studying membrane proteins within the native‐like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using 1H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical 1H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid‐state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l?1 of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of 1H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
The application of solid state NMR (SS NMR) to the study of multiphase polymer systems is growing rapidly. This article aims to provide an overview of the current state of development of this field, paying particular attention to the study of hydrogen bonding in hydrogen-bonded polymer materials through SS NMR investigations. The effection of hydrogen bonds on the miscibility, phase separation and dynamic behavior of selected systems will also be discussed, based on work during the last 10 to 15 years.  相似文献   

19.
Melanin is the most widespread pigment in the animal kingdom. Despite its importance, its detailed structure and overall molecular architecture remain elusive. Both eumelanin (black) and pheomelanin (red) occur in the human body. These two melanin compounds show very different responses to UV‐radiation exposure, which could relate to their microscopic features. Herein, the structural properties and motional behavior of natural eu‐ and pheomelanin extracted from black and red human hair are investigated by means of solid‐state NMR spectroscopy. Several 1D and 2D NMR spectroscopic techniques were combined to highlight the differences between the two forms of the pigment. The quantitative analysis of the 1H NMR wide‐line spectra extracted from 2D 1H–13C LG‐WISE experiments revealed the presence of two dynamically distinguishable components in both forms. Remarkably, the more mobile fraction of the pigment showed a higher mobility with respect to the proteinaceous components that coexist in the melanosome, which is particularly evident for the red pigment. An explanation of the observed effects takes into account the different architecture of the proteinaceous matrix that constitutes the physical substrate onto which melanin polymerizes within the eu‐ and pheomelanosomes. Further insight into the molecular structure of the more mobile fraction of pheomelanin was also obtained by means of the analysis of 2D 1H–13C INEPT experiments. Our view is that not only structural features inherent in the pure pigment, but also the role of the matrix structure in defining the overall melanin supramolecular arrangement and the resulting dynamic behavior of the two melanin compounds should be taken into account to explain their functions. The reported results could pave a new way toward the explanation of the molecular origin of the differences in the photoprotection activity displayed by black and red melanin pigments.  相似文献   

20.
2H, 31P, and 1H‐magic‐angle‐spinning (MAS) solid‐state NMR spectroscopic methods were used to elucidate the interaction between sorbic acid, a widely used weak acid food preservative, and 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC) bilayers under both acidic and neutral pH conditions. The linewidth broadening observed in the 31P NMR powder pattern spectra and the changes in the 31P longitudinal relaxation time (T1) indicate interaction with the phospholipid headgroup upon titration of sorbic acid or decanoic acid into DMPC bilayers over the pH range from 3.0 to 7.4. The peak intensities of sorbic acid decrease upon addition of paramagnetic Mn2+ ions in DMPC bilayers as recorded in the 1H MAS NMR spectra, suggesting that sorbic acid molecules are in close proximity with the membrane/aqueous surface. No significant 2H quadrupolar splitting (ΔνQ) changes are observed in the 2H NMR spectra of DMPC‐d54 upon titration of sorbic acid, and the change of pH has a slight effect on ΔνQ, indicating that sorbic acid has weak influence on the orientation order of the DMPC acyl chains in the fluid phase over the pH range from 3.0 to 7.4. This finding is in contrast to the results of the decanoic acid/DMPC‐d54 systems, where ΔνQ increases as the concentration of decanoic acid increases. Thus, in the membrane association process, sorbic acids are most likely interacting with the headgroups and shallowly embedded near the top of the phospholipid headgroups, rather than inserting deep into the acyl chains. Thus, antimicrobial mode of action for sorbic acid may be different from that of long‐chain fatty acids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号