首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complexes of lanthanides with N,N-bis(2-hydroxybenzylidene)-2-hydroxyphenylmethanediamine (H3L) were synthesized and investigated by the elemental, IR, magnetochemical, and thermogravimetric methods. Using the data obtained, they were found to have compositions Ln2L2 · nH2O and La2L2 · MCl2 · 4H2O (Ln = La3+, Pr3+, Nd3+, Dy3+, Er3+; M = Cu2+, Co2+, Ni2+; n = 4, 6). Suggestions on their structures were made. In the interval of 20–140°C, these complexes were shown to be high-resistance semiconductors.  相似文献   

2.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

3.
Four copper(II) complexes and one copper(I) complex with pyridine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (HLpz) and N-(2-(pyridin-2-yl)ethyl)pyrazine-2-carboxamide (HLpz?) were synthesized and characterized. The X-ray crystal structures of [Cu2(Lpz)2(4,4?-bipy)(OTf)2] (1, OTf?=?trifluoromethanesulfonate, 4,4?-bipy?=?4,4?-bipyridine) and [Cu(Lpz)(py)2]OTf·H2O (2, py?=?pyridine) revealed binuclear and mononuclear molecular species, respectively, while [Cu(Lpz)(μ2-1,1-N3)]n (3), [Cu(Lpz?)(μ2-1,3-N3)]n (4), and [Cu(HLpz)Cl]n (5) are coordination polymer 1-D chains in the solid state.  相似文献   

4.
The acid-basic and complexing properties of N,N-dimethyl-N-(2-hydroxybenzyl)ethylenediamine (HL) in aqueous propan-2-ol were characterized by spectrophotometry, pH-metry, and mathematical simulation of equilibria in solutions (T = 25 ± 0.1°C, = 0.1 M KNO3). Dimer H2L2 was found to predominate in solution at c HL = 0.01 mol/l. Three protonated dimeric (H3L2 +, H4L2 2+, and H5L2 3+), diprotonated monomeric (H3L2+), and triprotonated tetrameric forms (H7L4 3+) were detected in the system, depending on pH. At lower ligand concentrations (c HL = 0.0015 mol/l), the solution contains both dimers and monomers of this compound. The higher dentate number of HL compared to 2-alkylaminomethylphenols allows it to form more number of both mono- and binuclear complexes ([Cu(HL)]2+, [Cu(HL)2]2+, [CuL2], [CuL2OH], [Cu2(HL)2]4+, and [Cu2(HL)2L2]2+), making them more stable.  相似文献   

5.
Optically active derivative of the natural monoterpene (+)-3-carene, namely, ethyl (3bS,4aR)-[(3,4,4-trimethyl-3b,4,4a,5-tetrahydrocyclopropa[3,4]cyclopenta[1,2-c]pyrazole-1-carbothioyl)-amino]acetate (HL1) and ethyl [(3,5-dimethyl-pyrazole-1-carbothioyl)-amino]acetate (HL2) were synthesized. Paramagnetic complexes [CuL1Cl] n (I) and [Cu2L2 2Cl2] (II) were prepared. According to X-ray diffraction data, complex Iwith anion of (+)-3-carene derivative has chain structure, whereas complex IIwith anion of HL2, which has no carbocyclic fragments, is a pseudodimer. Organic anions act as tetradentate bridging, cyclic ligands forming five-membered CuN3C and CuNOC2metal cycles. Coordination polyhedron of Cu(ClN2O + S) in complexes Iand IIis a square pyramid. The values of efffor complexes Iand II(1.88 and 1.84 B, respectively) are constant in the temperature interval 78–300 K, which means that the unpaired electrons of Cu(II) ions do not exhibit any noticeable exchange interactions.  相似文献   

6.
A new benzimidazoyl ligand bis[(N-ethylbenzimidazol-2-yl)methyl]ether (EDGB) and CuII complexes [Cu(L1) (L2)](ClO4)·mEt2O·nH2O [L1 = bis[(benzimidazol-2-yl)methyl]ether (DGB) or EDGB, L2 = 2,2-bipyridine (bipy) or 1,10-phenanthroline (phen)] have been synthesized and characterized by elemental analyses and i.r. spectra. The single-crystal structure of the [Cu(phen)(DGB)(OClO3)]ClO4·Et2O·0.5H2O complex was determined by X-ray diffraction. The geometry around Cu is best described as a distorted octahedron with four nitrogen atoms from phen and DGB ligands forming the equatorial plane. The oxygen atoms of DGB and one perchlorate group are in the axial positions with semi-coordinated bonding modes. The electrochemical behavior of the complexes is described.  相似文献   

7.
The synthesis, reduction, optical and e.p.r. spectral properties of a series of new binuclear copper(II) complexes, containing bridging moieties (OH, MeCO2 , NO2 , and N3 ), with new proline-based binuclear pentadentate Mannich base ligands is described. The ligands are: 2,6-bis[(prolin-1-yl)methyl]4-bromophenol [H3L1], 2,6-bis[(prolin-1-yl)methyl]4-t-butylphenol [H3L2] and 2,6-bis[(prolin-1-yl)methyl]4-methoxyphenol [H3L3]. The exogenous bridging complexes thus prepared were hydroxo: [Cu2L1(OH)(H2O)2] · H2O (1a), [Cu2L2(OH)(H2O)2] · H2O (1b), [Cu2L3(OH)(H2O)2] · H2O (1c), acetato [Cu2L1(OAc)] · H2O (2a), [Cu2L2(OAc)] · H2O (2b), [Cu2L3(OAc)] · H2O (2c), nitrito [Cu2L1(NO2)(H2O)2] · H2O (3a), [Cu2L2(NO2)(H2O)2] · H2O (3b), [Cu2L3(NO2)(H2O)2] · H2O (3c) and azido [Cu2L1(N3)(H2O)2] · H2O (4a), [Cu2L2(N3)(H2O)2] · H2O (4b) and [Cu2L3(N3)(H2O)2] · H2O (4c). The complexes were characterized by elemental analysis and by spectroscopy. They exhibit resolved copper hyperfine e.p.r. spectra at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. The strength of the antiferromagnetic coupling lies in the order: NO2 N3 OH OAc. Cyclic voltammetry revealed the presence of two redox couples CuIICuII CuIICuI CuICuI. The conproportionality constant K con for the mixed valent CuIICuI species for all the complexes have been determined electrochemically.  相似文献   

8.
Xie  Yongshu  Ni  Jia  Liu  Xueting  Liu  Qingliang  Xu  Xiaolong  Du  Chenxia  Zhu  Yu 《Transition Metal Chemistry》2003,28(3):367-370
Novel 1:2 and 1:1 (M:L) copper(II) complexes have been prepared from the tridentate ligand 2-(1-methyl-2-aza-5-oxapentyl)phenol (H2L1). The crystal structure of [Cu(HL1)2] (1) exhibits a noncentrosymmetric square-planar geometry with a slightly tetrahedral distortion. The CuII atom is coordinated by two amino N and two phenoxo O atoms of two (HL1) ligands. The phenoxo and the alkoxy groups are involved in two strong intramolecular hydrogen bonds. The coordination moieties are further connected to a 1D linear structure by the action of intermolecular hydrogen bonds between the alkoxyl and the amino groups. The importance of steric hindrance introduced by the methyl group in the molecular structure and the packing of the complex molecules has been demonstrated. The e.p.r. parameters of (1) have been obtained: g = 2.231, g = 2.005, g iso = 2.080, A = 185.0 G, A iso = 86.5 G, A = (3A isoA )/2 = 37.3 G. These results confirm a distorted square planar stereochemistry with a ( )1 ground state.  相似文献   

9.
Summary White crystalline complexes of general formula Cu2L4X2 (where X = Cl, Br and L = 1, 3-oxazolidine-2-thione, pyrrolidine-2-thione,N-methyl-1,3-imidazolidine-2-thione andN-ethyl-1,3-imidazolidine-2-thione) and CuLX (where L = 1,3-imidazolidine-2-thione) were prepared by reduction of copper(II) halides and studied by i.r. spectroscopy in the 4000–200 cm range. Evidence for ligand coordination to the metal through sulphur was found in each case. The(CuCI) vibration in all the chloro derivatives falls atca. 240 cm.  相似文献   

10.
Synthesis of four different types of ligands Ar[COC(NOH)R] n (Ar = biphenyl, n = 1, HL1; Ar = biphenyl, n = 2, H2L2; Ar = diphenylmethane, n = 1, HL3; Ar = diphenylmethane, n = 2, H2L4; R = furfurylamine in all ligands) and their dinuclear Co2+, Ni2+, Cu2+, and Zn2+ complexes is reported herein. These compounds were characterized by elemental analysis, ICP-OES, FT-IR spectra, and magnetic susceptibility measurements. The ligands were further characterized by 1H NMR. The results suggest that dinuclear complexes of HL1 and HL3 have a metal to ligand mole ratio of 2: 2 and dinuclear complexes H2L2 and H2L4 have a metal to ligand mole ratio of 2: 1. Square pyramidal or octahedral structures are proposed for complexes of oxime ligands. Furthermore, extraction abilities of the four ligands were also evaluated in chloroform using selected transition metal picrates such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+. The ligands show strong binding ability towards Hg2+ and Cu2+ ions.  相似文献   

11.
Summary Two types of the CoII complexes L1Co (H2L1=N,N-ethylenebis(isonitrosoacetylacetoneimine) were prepared. In type (a) the chelate rings are five-membered whereas in type (b) they are six-membered. The type (b) complexes were converted to type (a) in refluxing solutions. Half-ionization of the ligand is observed in the complexes HL1 Co(O2CMe) and HL1MnCl, where the chelate rings are five- and six-membered respectively. The octahedral complex L1FeCl·H2O has chelate rings of type (a) as does the complex L2Co (H2L2=unsymmetric Schiff baseN,N-ethylene(isonitrosoacetylacetoneimineacetylacetoneimine). Twocis complexes (La 2Lb 3)Pd and (La 3)2Pd are characterized (HL3=isonitrosoacetylacetoneimine, (a) and (b) denote the type of chelate ring). Structures for the metal complexes and the sizes of the chelate rings are suggested on the basis of analytical and spectral evidence.  相似文献   

12.
Summary New complexes of copper(I) with some heterocyclic pentatomic rings, X·CH2·CH2·NR·CSe, where X=CH2, NH, NMe, NEt, S and R=H, Me, Et, were prepared by reacting copper(II) chloride and bromide in MeOH. The stoichiometry of the complexes and the binding mode of the ligands have been discussed comparatively, together with those of the thione parents. It is noteworthy that the selone ligands with R=H (L) yield complexes of the type CuLnY, (n=1,2 or 3; Y=Cl or Br) like the corresponding thione ones. On the contrary, when R=Me or Et, the selonic ligands (L) give complexes whose stoichiometries, Cu2LY2 and Cu3L2Y3, differ from the thione homologues. The i.r. spectra of the complexes compared with those of the ligands support the coordinative bondvia selenium atom.  相似文献   

13.
It was established that the reactions of pyrazol-3-yl-substituted nitronyl nitroxide (HL1) and pyrazol-3-yl-substituted imino nitroxide (HL3) with Cu(II) acetate lead to self-assembly of the Cu4(OH)2(OAc)4(DMF)2(L1)2 tetranuclear and Cu2(OAc)2(H2O)2(L3)2 dinuclear complexes, respectively. The reaction of Cu(II) acetate with 5-ethoxycarbonyl-pyrazol-3-yl-substituted nitronyl nitroxide (HL2) gave unexpected solid Cu2(H2O)2(L6)2 · 2DMF, in which L6 is a deprotonated 5-carboxy-pyrazol-3-yl-substituted nitronyl nitroxide, formed as a result of cleavage of an ester bond in the starting HL2. A similar transformation of the paramagnetic ligand was observed in the reaction of Cu(II) acetate with 5-ethoxycarbonyl-pyrazol-3-yl-substituted imino nitroxide (HL4). It led to the formation of Cu2(DMF)2(L7)2, where L7 is deprotonated 2-(5-carboxy-1H-pyrazol-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide. An X-ray diffraction study indicated that in Cu4(OH)2(OAc)4(DMF)2(L1)2 and Cu2(OAc)2(H2O)2(L3)2, the L1 and L3 paramagnetic ligands perform the bridging cyclic tridentate function, while in Cu2(H2O)2(L6)2 · 2DMF and Cu2(DMF)2(L7)2, the paramagnetic L6 and diamagnetic L7 are bridging bicyclic tetradentate ligands. The magnetic behavior of complexes with coordinated nitronyl nitroxide – Cu4(OH)2(OAc)4(DMF)2(L1)2 and Cu2(H2O)2(L6)2 · 2DMF is dictated by the dominant antiferromagnetic exchange interactions, which is confirmed by quantum-chemical data. The magnetic susceptibility of Cu2(OAc)2(H2O)2(L3)2 reflects the competition between the antiferromagnetic and ferromagnetic components, of which the latter is due to electron coupling in the Cu(II) ← N=C–N ? O exchange channels. EPR data confirm the results received from static magnetic measurements for multispin solids.  相似文献   

14.
Prussian blue and its analogs bonded to poly(vinylamine hydrochloride) (PVAm · HCl) containing FeII or FeIII and M2+ (M=Fe, Co, Cu) in a 11 molar ratio were obtained by the reaction of [Fe(CN)6] n (n=3,4) with M2+ ion-PVAm · HCl mixture in aqueous solution. Under a limited polymer concentration (TVAm/TFe over 10), these polymer complexes thus obtained were stable and soluble in water. By casting these solutions, colored films can be produced. The formation of Prussian blue and its analogs bonded to PVAm · HCl was also investigated by the Benesi-Hildebrand method. The molar extinction coefficients of intervalence charge transfer (FeIIFeIII, CoIIFeIII, FeIICuII) band for MFe(CN)6](n–2)– bound to PVAm · HCl (M=Fe, Co, Cu) were found to be 10,100–9601 · mol–1 · cm–1 at 25 C. The formation constants were found to be in the range of 107 to 1010 M–1. The changes of enthalpy (H) and entropy (S) were found to be in the range of –10.4 to –22.5 kJ · mol–1 and 5.7 to 52.9 J · K–1 mol–1 respectively, at 25C.  相似文献   

15.
Binuclear CuII complexes having new flexible heptadentate ligands 2,6-bis{[bis(3,3-N,N-dimethylaminopropyl)amino]methyl}-4-bromophenol [HL1], 2,6-bis(3,3-N,N-dimethylaminopropyl)amino]methyl}-4-methylphenol [HL2], and 2,6-bis{[bis(3,3-N,N-dimethylaminopropyl)amino]methyl}-4-methoxyphenol [HL3], capable of assembling two copper ions in close proximity have been synthesized. Comparisons of the charge-transfer (CT) features, observed in electronic spectra of these complexes, are correlated with the electronic effect on the aromatic ring of the ligand systems. Cyclic voltammetry has revealed the existence of two reduction couples,
The first is sensitive to the electronic effects of aromatic ring substituents of the ligand system, shifting to more positive potentials when more electrophilic groups replace the existing substituents. The conproportionation constants (k con) for the mixed valent CuICuII complexes have been determined electrochemically. The magnetic susceptibilities of the complexes have been measured over the 70–300 K range and the exchange coupling parameter (–2J) determined by a least squares fit of the data which indicates an antiferromagnetic spin exchange (–2J = 94–172 cm–1) between the CuII ions with bridging units in the order: N3 NO2 > OAc > OH.  相似文献   

16.
Summary The template reaction of isonitrosoacetylacetone (Hina) witho-phenylenediamine (o-phenen) in the presence of (MeCO2)2Ni·4H2O in EtOH yielded three types of nickel(II) complexes (depending on the molar ratio of the reactants) formulated as L1Ni(O2CMe)·2H2O (1), (L1)2Ni (2), and L2Ni·H2O (3). HL1 and H2L2 are the half unit and symmetric Schiff base ligands obtained from the (11) and (21) condensation of (Hina) with (o-phenen) respectively. The (11) molar ratio reaction of (1) with either acetylacetone (Hacac) or (Hina) in CHCl3 led to the formation of mixed ligand complexes L1Ni(acac)·H2O (4) and L1Ni(ina)·H2O (5) whereas a similar reaction with salicylaldehyde (Hsal) produced L3Ni (6); H2L3 is the unsymmetric Schiff base formed by the (11) condensation of the amino group in (1) with (Hsal). Analytical, spectral and magnetic moment evidence are compatible with the suggested structures of the metal complexes.This paper is a summary of the M.Sc. thesis of S. M. Imam.  相似文献   

17.
Summary New complexes of the general formulae [MLA(H2O)2]-Cl2 (M=Ni or Cu), [MLAX2] (M=Co or Cu; X=Cl or Br), [NiLABr2]·H2O, [MLA] [MCl4] (M=Pd or Pt), [NiLB(H2O)2]Cl2·2H2O, [MLBCl2] (M=Co, Ni, Cu, Pd or Pt; X=Cl or Br) and [MLB] [MCl4] (M=Pd or Pt), where LA=N,N-ethylenebis(2-acetylpyridine imine) and LB=N, N-ethylenebis(2-benzoylpyridine imine), have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, t.g./d.t.g. methods, magnetic susceptibilities and spectroscopic (i.r., far-i.r., ligand field,1Hn.m.r.) studies. Monomeric pseudo-octahedral stereochemistries for the CoII, NiII and CuII complexes andcis square planar structures for the compounds [MLBX2] (M=Pd or Pt; X=Cl or Br) are assigned in the solid state. The molecules LA and LB behave as tetradentate chelate ligands in the CoII, NiII, CuII and Magnus-type PdII and PtII complexes, bonding through both the pyridine and methine nitrogen atoms. A bidentateN-methine coordination of the Schiff base LB is assigned in the [MLBX2] complexes (M=Pd or Pt; X=Cl or Br). The anomalous magnetic moment values of the CoII complexes are discussed.  相似文献   

18.
Summary TheN-methyl-N-ethylO-ethylcarbamate ligand (L) has been synthesized and its UCl44·2 L, UO2(NO3)2 · 2 L and ThCl4·3L complexes isolated. In addition, the UCl44-2L complex (where L=N,N-diethylO-ethylcarbamate) is described. From the i.r. spectra, it is clear that the ligands bind to the metal through the carbonyl oxygen atom. The1H n.m.r. spectra of ligands and complexes are reported and discussed.  相似文献   

19.
A novel series of thiourea derivatives, namely, N,N-diphenyl-N-(4-phenyl-benzoyl)thiourea (HL1), N,N-diphenyl-N-(4-chloro-benzoyl)thiourea (HL2) and N,N-di-n-propyl-N-(4-chloro-benzoyl)thiourea (HL3), and its metal complexes has been prepared and characterised by elemental analysis, i.r. spectroscopy, 1H-n.m.r. spectroscopy, mass spectrometry and single crystal X-ray diffraction. The ligand coordinates to NiII, CuII and CoII in a bidentate manner yielding essentially neutral complexes of the type cis-[ML2]. N.m.r. spectra and single crystal X-ray diffraction analysis revealed the presence of a distorted tetrahedral coordination ML2 complex.  相似文献   

20.
The thermodynamic and thermal properties of [Cu(L)2·Cl2], [Ni(L)2]·Cl2, [Co(L)2·Cl2]; L=1,2-bis(o-aminophenoxy)ethane (BAFE), complexes have been investigated. The thermal decomposition of the complexes took place in two distinct steps in endothermic reaction up to 700°C. The activation energy E, the entropy change S #, enthalpy H change and Gibbs free energy change G # were calculated from the results of thermogravimetry analysis (TG) and heat capacity from the results of differential scanning calorimetry (DSC). It was found that the thermal stabilities and activation energies of the complexes follow the order Ni(II)>Cu(II)>Co(II) and E Co<E Ni<E Cu, respectively.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号