首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).  相似文献   

2.
Self-reaction of hydroxyl radicals, OH + OH → H(2)O + O (1a) and OH + OH → H(2)O(2) (1b), was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 298-834 K temperature and 1-100 bar pressure ranges (bath gas He). A heatable high-pressure flow reactor was employed. Hydroxyl radicals were prepared using reaction of electronically excited oxygen atoms, O((1)D), produced in photolysis of N(2)O at 193 nm, with H(2)O. The temporal behavior of OH radicals was monitored via transient absorption of light from a dc discharge in H(2)O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study combined with the literature data indicate that the rate constant of reaction 1a, associated with the pressure independent component, decreases with temperature within the temperature range 298-414 K and increases above 555 K. The pressure dependent rate constant for (1b) was parametrized using the Troe expression as k(1b,inf) = (2.4 ± 0.6) × 10(-11)(T/300)(-0.5) cm(3) molecule(-1) s(-1), k(1b,0) = [He] (9.0 ± 2.2) × 10(-31)(T/300)(-3.5±0.5) cm(3) molecule(-1) s(-1), F(c) = 0.37.  相似文献   

3.
The overall rate constant for the radical-radical reaction C2H5 + HO2 --> products has been determined at room temperature by means of time-resolved mass spectrometry using a laser photolysis/flow reactor combination. Excimer laser photolysis of gas mixtures containing ethane, hydrogen peroxide, and oxalyl chloride was employed to generate controlled concentrations of C2H5 and HO2 radicals by the fast H abstraction reactions of the primary radicals Cl and OH with C2H6 and H2O2, respectively. By careful adjustments of the radical precursor concentrations, the title reaction could be measured under almost pseudo-first-order conditions with the concentration of HO2 in large excess over that of C2H5. From detailed numerical simulations of the measured concentration-time profiles of C2H5 and HO2, the overall rate constant for the reaction was found to be k1(293 K) = (3.1 +/- 1.0) x 10(13) cm3 mol(-1) s(-1). C2H5O could be confirmed as a direct reaction product.  相似文献   

4.
The formation and the decomposition of chemically activated cyclopentoxy radicals from the c-C5H9 + O reaction have been studied in the gas phase at room temperature. Two different experimental arrangements have been used. Arrangement A consisted of a laser-flash photolysis set up combined with quantitative Fourier transform infrared spectroscopy and allowed the determination of the stable products at 4 mbar. The c-C5H9 radicals were produced via the reaction c-C5H10 + Cl with chlorine atoms from the photolysis of CFCl3; the O atoms were generated by photolysis of SO2. Arrangement B, a conventional discharge flow-reactor with molecular beam sampling, was used to determine the rate coefficient. Here, the hydrocarbon radicals (c-C5H9, C2H5, CH2OCH3) were produced via the reaction of atomic fluorine with c-C5H10, C2H6, and CH3OCH3, respectively, and detected by mass spectrometry after laser photoionization. For the c-C5H9 + O reaction, the relative contributions of intermediate formation (c-C5H9O) and direct abstraction (c-C5H8 + OH) were found to be 68 +/- 5 and 32 +/- 4%, respectively. The decomposition products of the chemically activated intermediate could be identified, and the following relative branching fractions were obtained: c-C5H8O + H (31 +/- 2%), CH2CH(CH2)2CHO + H (40 +/- 5%), 2 C2H4 + H + CO (17 +/- 5%), and C3H4O + C2H4 + H (12 +/- 5%). Additionally, the product formation of the c-C5H8 + O reaction was studied, and the following relative yields were obtained (mol %): C2H4, 24%; C3H4O, 18%; c-C5H8O, 30%; c-C5H8O, 23%; 4-pentenal, 5%. The rate coefficient of the c-C5H9 + O reaction was determined relative to the reactions C2H5 + O and CH3OCH2 + O leading to k = (1.73 +/- 0.05) x 10(14) cm3 mol(-1) s(-1). The experimental branching fractions are analyzed in terms of statistical rate theory with molecular and transition-state data from quantum chemical calculations, and high-pressure limiting Arrhenius parameters for the unimolecular decomposition reactions of C5H9O species are derived.  相似文献   

5.
The rate constant for the reaction OH(X2Pi) + OH(X2Pi) --> O(3P) + H2O has been measured over the temperature range 293-373 K and pressure range 2.6-7.8 Torr in both Ne and Ar bath gases. The OH radical was created by 193 nm laser photolysis of N2O to produce O(1D) atoms that reacted rapidly with H2O to produce the OH radical. The OH radical was detected by quantitative time-resolved near-infrared absorption spectroscopy using Lambda-doublet resolved rotational transitions of the first overtone of OH(2,0) near 1.47 microm. The temporal concentration profiles of OH were simulated using a kinetic model, and rate constants were determined by minimizing the sum of the squares of residuals between the experimental profiles and the model calculations. At 293 K the rate constant for the title reaction was found to be (2.7 +/- 0.9) x 10(-12) cm(3) molecule(-1) s(-1), where the uncertainty includes an estimate of both random and systematic errors at the 95% confidence level. The rate constant was measured at 347 and 373 K and found to decrease with increasing temperature.  相似文献   

6.
OH/OD product state distributions arising from the reaction of gas-phase O(3P) atoms at the surface of the liquid hydrocarbon squalane C30H62/C30D62 have been measured. The O(3P) atoms were generated by 355 nm laser photolysis of NO2 at a low pressure above the continually refreshed liquid. It has been shown unambiguously that the hydroxyl radicals detected by laser-induced fluorescence originate from the squalane surface. The gas-phase OH/OD rotational populations are found to be partially sensitive to the liquid temperature, but do not adapt to it completely. In addition, rotational temperatures for OH/OD(v'=1) are consistently colder (by 34+/-5 K) than those for OH/OD(v'=0). This is reminiscent of, but less pronounced than, a similar effect in the well-studied homogeneous gas-phase reaction of O(3P) with smaller hydrocarbons. We conclude that the rotational distributions are composed of two different components. One originates from a direct abstraction mechanism with product characteristics similar to those in the gas phase. The other is a trapping-desorption process yielding a thermal, Boltzmann-like distribution close to the surface temperature. This conclusion is consistent with that reached previously from independent measurements of OH product velocity distributions in complementary molecular-beam scattering experiments. It is further supported by the temporal profiles of OH/OD laser-induced fluorescence signals as a function of distance from the surface observed in the current experiments. The vibrational branching ratios for (v'=1)/(v'=0) for OH and OD have been found to be (0.07+/-0.02) and (0.30+/-0.10), respectively. The detection of vibrationally excited hydroxyl radicals suggests that secondary and/or tertiary hydrogen atoms may be accessible to the attacking oxygen atoms.  相似文献   

7.
The formation of HO(2) in the reactions of C(2)H(5), n-C(3)H(7), and i-C(3)H(7) radicals with O(2) is investigated using the technique of laser photolysis/long-path frequency-modulation spectroscopy. The alkyl radicals are formed by 266 nm photolysis of alkyl iodides. The formation of HO(2) from the subsequent reaction of the alkyl radicals with O(2) is followed by infrared frequency-modulation spectroscopy. The concentration of I atoms is simultaneously monitored by direct absorption of a second laser probe on the spin-orbit transition. The measured profiles are compared to a kinetic model taken from time-resolved master-equation results based on previously published ab initio characterizations of the relevant stationary points on the potential-energy surface. The ab initio energies are adjusted to produce agreement with the present experimental data and with available literature studies. The isomer specificity of the present results enables refinement of the model for i-C(3)H(7) + O(2) and improved agreement with experimental measurements of HO(2) production in propane oxidation.  相似文献   

8.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

9.
The 4th positive and Cameron band emissions from electronically excited CO have been observed for the first time in 248-nm pulsed laser photolysis of a trace amount of CHBr(3) vapor in an excess of O atoms. O atoms were produced by dissociation of N(2)O (or O(2)) in a cw-microwave discharge cavity in 2.0 Torr of He at 298 K. The CO emission intensity in these bands showed a quadratic dependence on the laser fluence employed. Temporal profiles of the CO(A) and other excited-state products that formed in the photoproduced precursor + O-atom reactions were measured by recording their time-resolved chemiluminescence in discrete vibronic bands. The CO 4th positive transition (A(1)Pi, v' = 0 --> X(1)Sigma(+), v' ' = 2) near 165.7 nm was monitored in this work to deduce the pseudo-first-order decay kinetics of the CO(A) chemiluminescence in the presence of various added substrates (CH(4), NO, N(2)O, H(2), and O(2)). From this, the second-order rate coefficient values were determined for reactions of these substrates with the photoproduced precursors. The measured reactivity trends suggest that the prominent precursors responsible for the CO(A) chemiluminescence are the methylidyne radicals, CH(X(2)Pi) and CH(a(4)Sigma(-)), whose production requires the absorption of at least 2 laser photons by the photolysis mixture. The O-atom reactions with brominated precursors (CBr, CHBr, and CBr(2)), which also form in the photolysis, are shown to play a minor role in the production of the CO(A or a) chemiluminescence. However, the CBr(2) + O-atom reaction was identified as a significant source for the 289.9-nm Br(2) chemiluminescence that was also observed in this work. The 282.2-nm OH and the 336.2-nm NH chemiluminescences were also monitored to deduce the kinetics of CH(X(2)Pi) and CH(a(4)Sigma(-)) reactions when excess O(2) and NO were present.  相似文献   

10.
The kinetics and mechanism of oxidation of CF3CHFOCH3 was studied using an 11.5-dm3 environmental reaction chamber. OH radicals were produced by UV photolysis of an O3-H2O-He mixture at an initial pressure of 200 Torr in the chamber. The rate constant of the reaction of CF3CHFOCH3 with OH radicals (k1) was determined to be (1.77 +/- 0.69) x 10(-12) exp[(-720 +/- 110)/T] cm3 molecule(-1)(s-1) by means of a relative rate method at 253-328 K. The mechanism of the reaction was investigated by FT-IR spectroscopy at 298 K. CF3CHFOC(O)H, FC(O)OCH3, and COF2 were determined to be the major products. The branching ratio (k1a/k1b) for the reactions CF3CHFOCH3 + OH --> CF3CHFOCH2* + H2O (k1a) and CF3CHFOCH3 + OH --> CF3CF*OCH3 + H2O (k1b) was estimated to be 4.2:1 at 298 K from the yields of CF3CHFOC(O)H, FC(O)OCH3, and COF2. The rate constants of the reactions of CF3CHFOC(O)H (k2) and FC(O)OCH3 (k3) with OH radicals were determined to be (9.14 +/- 2.78) x 10(-13) exp[(-1190 +/- 90)/T] and (2.10 +/- 0.65) x 10(-13) exp[(-630 +/- 90)/T] cm3 molecule(-1)(s-1), respectively, by means of a relative rate method at 253-328 K. The rate constants at 298 K were as follows: k1 = (1.56 +/- 0.06) x 10-13, k2 = (1.67 +/- 0.05) x 10-14, and k3 = (2.53 +/- 0.07) x 10-14 cm3 molecule(-1)(s-1). The tropospheric lifetimes of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 with respect to reaction with OH radicals were estimated to be 0.29, 3.2, and 1.8 years, respectively.  相似文献   

11.
The rate of the reaction 1, HCO+O2-->HO2+CO, has been determined (i) at room temperature using a slow flow reactor setup (20 mbarH2+HCO+CO, into additional HCO radicals. The rate constants of reaction 4 were determined from unperturbed photolysis experiments to be k4(295 K)=(3.6+/-0.3)x10(10) cm3 mol-1 s-1 and k4(769-1107 K)=5.4x10(13)exp(-18 kJ mol-1/RT) cm3 mol-1 s-1(Delta log k4=+/-0.12).  相似文献   

12.
Rate coefficients, k1(T), over the temperature range of 210-390 K are reported for the gas-phase reaction OH + HC(O)C(O)H (glyoxal) --> products at pressures between 45 and 300 Torr (He, N2). Rate coefficients were determined under pseudo-first-order conditions in OH using pulsed laser photolysis production of OH radicals coupled with OH detection by laser-induced fluorescence. The rate coefficients obtained were independent of pressure and bath gas. The room-temperature rate coefficient, k1(296 K), was determined to be (9.15 +/- 0.8) x 10-12 cm3 molecule-1 s-1. k1(T) shows a negative temperature dependence with a slight deviation from Arrhenius behavior that is reproduced over the temperature range included in this study by k1(T) = [(6.6 +/- 0.6) x 10-18]T2[exp([820 +/- 30]/T)] cm3 molecule-1 s-1. For atmospheric modeling purposes, a fit to an Arrhenius expression over the temperature range included in this study that is most relevant to the atmosphere, 210-296 K, yields k1(T) = (2.8 +/- 0.7) x 10-12 exp[(340 +/- 50)/T] cm3 molecule-1 s-1 and reproduces the rate coefficient data very well. The quoted uncertainties in k1(T) are at the 95% confidence level (2sigma) and include estimated systematic errors. Comparison of the present results with the single previous determination of k1(296 K) and a discussion of the reaction mechanism and non-Arrhenius temperature dependence are presented.  相似文献   

13.
The cis,cis-[(bpy)(2)Ru(III)(OH(2))](2)O(4+) micro-oxo dimeric coordination complex is an efficient catalyst for water oxidation by strong oxidants that proceeds via intermediary formation of cis,cis-[(bpy)(2)Ru(V)(O)](2)O(4+) (hereafter, [5,5]). Repetitive mass spectrometric measurement of the isotopic distribution of O(2) formed in reactions catalyzed by (18)O-labeled catalyst established the existence of two reaction pathways characterized by products containing either one atom each from a ruthenyl O and solvent H(2)O or both O atoms from solvent molecules. The apparent activation parameters for micro-oxo ion-catalyzed water oxidation by Ce(4+) and for [5,5] decay were nearly identical, with DeltaH(++) = 7.6 (+/-1.2) kcal/mol, DeltaS() = -43 (+/-4) cal/deg mol (23 degrees C) and DeltaH(++) = 7.9 (+/-1.1) kcal/mol, DeltaS(++) = -44 (+/-4) cal/deg mol, respectively, in 0.5 M CF(3)SO(3)H. An apparent solvent deuterium kinetic isotope effect (KIE) of 1.7 was measured for O(2) evolution at 23 degrees C; the corresponding KIE for [5,5] decay was 1.6. The (32)O(2)/(34)O(2) isotope distribution was also insensitive to solvent deuteration. On the basis of these results and previously established chemical properties of this class of compounds, mechanisms are proposed that feature as critical reaction steps H(2)O addition to the complex to form covalent hydrates. For the first pathway, the elements of H(2)O are added as OH and H to the adjacent terminal ruthenyl O atoms, and for the second pathway, OH is added to a bipyridine ring and H is added to one of the ruthenyl O atoms.  相似文献   

14.
The rate constants for the reaction OH + CH3C(O)OH --> products (1) were determined over the temperature range 287-802 K at 50 and 100 Torr of Ar or N2 bath gas using pulsed laser photolysis generation of OH by CH3C(O)OH photolysis at 193 nm coupled with OH detection by pulsed laser-induced fluorescence. The rate coefficient displays a complex temperature dependence with a sharp minimum at 530 K, indicating the competition between a reaction proceeding through a pre-reactive H-bonded complex to form CH3C(O)O + H2O, expected to prevail at low temperatures, and a direct methyl-H abstraction channel leading to CH2C(O)OH + H2O, which should dominate at high temperatures. The temperature dependence of the rate constant can be described adequately by k1(287-802 K) = 2.9 x 10(-9) exp{-6030 K/T} + 1.50 x 10(-13) exp{515 K/T} cm3 molecule(-1)(s-1), with a value of (8.5 +/- 0.9) x 10-13 cm3 molecule(-1)(s-1) at 298 K. The steep increase in rate constant in the range 550-800 K, which is reported for the first time, implies that direct abstraction of a methyl-H becomes the dominant pathway at temperatures greater than 550 K. However, the data indicates that up to about 800 K direct methyl-H abstraction remains adversely affected by the long-range H-bonding attraction between the approaching OH radical and the carboxyl -C(O)OH functionality.  相似文献   

15.
Rate constants for the radical-radical reactions N + OH → NO + H (1), and O + OH → O2 + H (2) have been measured for the first time by a direct method. In each experiment, a known concentration of N or O atoms is established in a discharge-flow system. OH radicals are then created by flash photolysis of H2O present in the flowing gas, and the disappearance of OH is monitored by time-resolved observations of its resonance fluorescence. The experiments yield K1 = (5.0 = 1.2) × 10?11 cm3 molecule?1 s?1 and k2 = (3.8 = 0.9) × 10?11 cm3 molecule?1 s?1, for the reactions at 298 = 5 K.  相似文献   

16.
Time-resolved kinetic studies of the reaction of silylene, SiH(2), with H(2)O and with D(2)O have been carried out in the gas phase at 297 K and at 345 K, using laser flash photolysis to generate and monitor SiH(2). The reaction was studied independently as a function of H(2)O (or D(2)O) and SF(6) (bath gas) pressures. At a fixed pressure of SF(6) (5 Torr), [SiH(2)] decay constants, k(obs), showed a quadratic dependence on [H(2)O] or [D(2)O]. At a fixed pressure of H(2)O or D(2)O, k(obs) values were strongly dependent on [SF(6)]. The combined rate expression is consistent with a mechanism involving the reversible formation of a vibrationally excited zwitterionic donor-acceptor complex, H(2)Si...OH(2) (or H(2)Si...OD(2)). This complex can then either be stabilized by SF(6) or it reacts with a further molecule of H(2)O (or D(2)O) in the rate-determining step. Isotope effects are in the range 1.0-1.5 and are broadly consistent with this mechanism. The mechanism is further supported by RRKM theory, which shows the association reaction to be close to its third-order region of pressure (SF(6)) dependence. Ab initio quantum calculations, carried out at the G3 level, support the existence of a hydrated zwitterion H(2)Si...(OH(2))(2), which can rearrange to hydrated silanol, with an energy barrier below the reaction energy threshold. This is the first example of a gas-phase-catalyzed silylene reaction.  相似文献   

17.
We report rate coefficients at 293 K for the collisional relaxation of H2O molecules from the highly excited /04>(+/-) vibrational states in collisions with H2O, Ar, H2, N2, and O2. In our experiments, the mid R:04(-) state is populated by direct absorption of radiation from a pulsed dye laser tuned to approximately 719 nm. Evolution of the population in the (/04>(+/-)) levels is observed using the combination of a frequency-quadrupled Nd:YAG laser, which selectively photolyses H2O(/04>(+/-)), and a frequency-doubled dye laser, which observes the OH(v=0) produced by photodissociation via laser-induced fluorescence. The delay between the pulse from the pump laser and those from the photolysis and probe lasers was systematically varied to generate kinetic decays. The rate coefficients for relaxation of H2O(/04>(+/-)) obtained from these experiments, in units of cm3 molecule(-1) s(-1), are: k(H2O)=(4.1+/-1.2) x 10(-10), k(Ar)=(4.9+/-1.1) x 10(-12), k(H2)=(6.8+/-1.1) x 10(-12), k(N2)=(7.7+/-1.5) x 10(-12), k(O2)=(6.7+/-1.4) x 10(-12). The implications of these results for our previous reports of rate constants for the removal of H2O molecules in selected vibrational states by collisions with H atoms (P. W. Barnes et al., Faraday Discuss. Chem. Soc. 113, 167 (1999) and P. W. Barnes et al., J. Chem. Phys. 115, 4586 (2001).) are fully discussed.  相似文献   

18.
Ab initio calculations at the level of CBS-QB3 theory have been performed to investigate the potential energy surface for the reaction of benzyl radical with molecular oxygen. The reaction is shown to proceed with an exothermic barrierless addition of O2 to the benzyl radical to form benzylperoxy radical (2). The benzylperoxy radical was found to have three dissociation channels, giving benzaldehyde (4) and OH radical through the four-centered transition states (channel B), giving benzyl hydroperoxide (5) through the six-centered transition states (channel C), and giving O2-adduct (8) through the four-centered transition states (channel D), in addition to the backward reaction forming benzyl radical and O2 (channel E). The master equation analysis suggested that the rate constant for the backward reaction (E) of C6H5CH2OO-->C6H5CH2+O2 was several orders of magnitude higher that those for the product dissociation channels (B-D) for temperatures 300-1500 K and pressures 0.1-10 atm; therefore, it was also suggested that the dissociation of benzylperoxy radicals proceeded with the partial equilibrium between the benzyl+O2 and benzylperoxy radicals. The rate constants for product channels B-D were also calculated, and it was found that the rate constant for each dissociation reaction pathway was higher in the order of channel D>channel C>channel B for all temperature and pressure ranges. The rate constants for the reaction of benzyl+O2 were computed from the equilibrium constant and from the predicted rate constant for the backward reaction (E). Finally, the product branching ratios forming CH2O molecules and OH radicals formed by the reaction of benzyl+O2 were also calculated using the stationary state approximation for each reaction intermediate.  相似文献   

19.
The kinetics and mechanism of the reactions of Cl atoms and OH radicals with CH3CH2CHO were investigated at room temperature using two complementary techniques: flash photolysis/UV absorption and continuous photolysis/FTIR smog chamber. Reaction with Cl atoms proceeds predominantly by abstraction of the aldehydic hydrogen atom to form acyl radicals. FTIR measurements indicated that the acyl forming channel accounts for (88 +/- 5)%, while UV measurements indicated that the acyl forming channel accounts for (88 +/- 3)%. Relative rate methods were used to measure: k(Cl + CH3CH2CHO) = (1.20 +/- 0.23) x 10(-10); k(OH + CH3CH2CHO) = (1.82 +/- 0.23) x 10(-11); and k(Cl + CH3CH2C(O)Cl) = (1.64 +/- 0.22) x 10(-12) cm3 molecule(-1) s(-1). The UV spectrum of CH3CH2C(O)O2, rate constant for self-reaction, and rate constant for cross-reaction with CH3CH2O2 were determined: sigma(207 nm) = (6.71 +/- 0.19) x 10(-18) cm2 molecule(-1), k(CH3CH2C(O)O2 + CH3CH2C(O)O2) = (1.68 +/- 0.08) x 10(-11), and k(CH3CH2C(O)O2 + CH3CH2O2) = (1.20 +/- 0.06) x 10(-11) cm3 molecule(-1) s(-1), where quoted uncertainties only represent 2sigma statistical errors. The infrared spectrum of C2H5C(O)O2NO2 was recorded, and products of the Cl-initiated oxidation of CH3CH2CHO in the presence of O2 with, and without, NO(x) were identified. Results are discussed with respect to the atmospheric chemistry of propionaldehyde.  相似文献   

20.
The kinetics of the O + HCNO reaction were investigated by a relative rate technique using infrared diode laser absorption spectroscopy. Laser photolysis (355 nm) of NO2 was used to produce O atoms, followed by O atom reactions with CS2, NO2, and HCNO, and infrared detection of OCS product from the O + CS2 reaction. Analysis of the experiment data yields a rate constant of k1= (9.84 +/- 3.52) x 10-12 exp[(-195 +/- 120)/T)] (cm3 molecule-1 s-1) over the temperature range 298-375 K, with a value of k1 = (5.32 +/- 0.40) x 10-12 cm3 molecule-1 s-1 at 298 K. Infrared detection of product species indicates that CO producing channels, probably CO + NO + H, dominate the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号