首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 789 毫秒
1.
Thermogravimetric analysis (TG) and powder X-ray diffraction (PXRD) were used to study some selected Mg/Al and Zn/Al layered double hydroxides (LDHs) prepared by co-precipitation. A Mg/Al hydrotalcite was investigated before and after reformation in fluoride and nitrate solutions. Little change in the TG or PXRD patterns was observed. It was proposed that successful intercalation of nitrate anions has occurred. However, the absence of any change in the d (003) interlayer spacing suggests that fluoride anions were not intercalated between the LDH layers. Any fluoride anions that were removed from solution are most likely adsorbed onto the outer surfaces of the hydrotalcite. As fluoride removal was not quantified it is not possible to confirm that this has happened without further experimentation. Carbonate is probably intercalated into the interlayer of these hydrotalcites, as well as fluoride or nitrate. The carbonate most likely originates from either incomplete decarbonation during thermal activation or adsorption from the atmosphere or dissolved in the deionised water. Small and large scale co-precipitation syntheses of a Zn/Al LDH were also investigated to determine if there was any change in the product. While the small scale experiment produced a good quality LDH of reasonable purity; the large scale synthesis resulted in several additional phases. Imprecise measurement and difficulty in handling the large quantities of reagents appeared to be sufficient to alter the reaction conditions causing a mixture of phases to be formed.  相似文献   

2.
Research on Chemical Intermediates - A Mg–Zn–Al (LDH)/MMT nanocomposite was prepared by physical interaction between Mg–Zn–Al layered double hydroxide (LDH) and...  相似文献   

3.
A novel combination for an inorganic-organic nanocomposite material was demonstrated. Anthryl dendron, i.e., poly(amidoamine) dendron with an anthracene chromophore group at the focal point, was incorporated in the interlayer space of ZnAl-NO3 type layered double hydroxide (LDH) through an anion-exchange reaction. The photoabsorption and fluorescence properties of the resulting material were different from those of the bare anthryl dendron molecule. It was suggested that the change in photochemical properties was due to the organization and π-π interaction of anthracene chromophores within the interlayer of the LDH.  相似文献   

4.
Exfoliated nanocomposite, based on Zn, Al layered double hydroxide (LDH) and polystyrene (PS), has been achieved by in-situ atom transfer radical polymerization reaction from initiator-modified LDH. The exfoliated structure is characterized by X-ray diffraction and transmission electronic microscope. The results suggest that the exfoliated ZnAl(DS) LDH sheets with a thickness of less than 1 nm disperse individually in the PS matrix, and the thermal stability of the nanocomposite shows a marked improvement. When the 50 wt% weight loss is selected as a comparison point, the decomposition temperature of PS/LDH nanocomposite is about 45 °C higher than that of pure PS.  相似文献   

5.
采用共沉淀法, 以替加氟(Tegafur, TF)插层层状双金属氢氧化物(LDHs)纳米杂化物(TF-LDHs)包覆磁性基质Fe3O4, 得到了具有核/壳结构的纳米复合体[Fe3O4@(TF-LDHs)], 采用XRD, FTIR, TEM, VSM和元素分析等技术对样品的化学组成、 晶体结构\, 形貌及磁性等进行了表征, 探讨了药物分子在LDHs层间的存在状态, 考察了其药物释放行为. 结果表明, Fe3O4@(TF-LDHs)纳米复合体具有顺磁性, 其比饱和磁化强度随磁性基质含量的增大而增强; TF分子在LDHs层间以长轴略倾斜于LDHs层板的方式呈双层排布; Fe3O4@(TF-LDHs)纳米复合体具有明显的药物缓释性能, 其释放动力学过程符合准二级动力学方程, 颗粒内部扩散为释放过程的速率控制步骤.  相似文献   

6.
The development of nanocomposite photocatalyst based on layered double hydroxides (LDHs) associated with TiO2 was the subject of this research. The thermally activated Zn–Al LDHs were selected as catalyst support precursor because of their proven photocatalytic activity and therefore their possible contribution to overall activity of novel Ti–Zn–Al nanocomposite. The catalyst precursor (Zn–Al LDH) was synthesized by low supersaturation coprecipitation method, and its association with active TiO2 component targeting the formation of novel Ti–Zn–Al nanocomposite was achieved by wet impregnation. Simultaneous thermal analysis (TG–DTA) was used to investigate the thermal behavior of Zn–Al LDH and Ti–Zn–Al LDHs. Complementary, morphology, texture, and structure characterization was carried out. The photocatalytic test reaction was performed under UV light using the methylene blue degradation. The results confirmed a successful impregnation of TiO2 on catalyst support precursor Zn–Al–LDH followed by considerable change in morphology and structure of Zn–Al LDH precursor. It was concluded that the synergic effect between TiO2 and Zn–Al LDH precursor contributes to the overall photocatalytic activity.  相似文献   

7.
Zn‐Al layered double hydroxides (LDHs), with nitrate as the charge balancing anion in the interlayer space, were synthesized by precipitation from homogeneous solution containing different amines [e.g., hexamethylenetetraamine (HMTA), diethylenediamine (DEDA), trimethylamine (TMA) and dimethylamine (DMA)]. The applied method does not require nitrogen atmosphere. The solution pH and concentration of different amines were varied in order to identify the controlling parameters and whether nitrate or carbonate are the interlayer anion. Particularly, the addition of amines turns out to be an effective tool for the synthesis of nitrate containing Zn‐Al LDHs independent from the nitrogen atmosphere. The structure, textural, composition, and morphological properties were investigated using the powder X‐ray diffraction (PXRD), thermogravimetric analysis (TGA), FT‐IR spectroscopy, and scanning electron microscopy (SEM). The analyses showed that the samples had high crystallinity and purity. The NO3‐ZnAl LDHs samples show that LDH sheets are predominantly smooth textured and the thickness of LDH sheets are found to be around 23 nm. The results also indicate that this method successfully produces a NO3 form Zn‐Al LDH that is almost identical to the one synthesized by conventional methods.  相似文献   

8.
《Solid State Sciences》2012,14(8):1196-1202
Zn–Al–NO3–layered double hydroxide (Zn–Al–NO3–LDH) was prepared by the co-precipitation method with a ratio of Zn/Al = 4 and at a constant pH of 7. Powder XRD patterns showed the characteristic peaks of layered structure of the LDH sample. Thermogravimetric analysis (TGA) and infrared spectra of the sample were investigated. Because of the existence of water molecules and anionic NO3 in the interlayer of the LDH, the in situ dielectric spectroscopy of the LDH can be described by an anomalous low frequency dispersion using the second type of Universal Power Law. Novel measurements of activation energy of LDH have been obtained at five different frequencies. The energy value increased from 0.05 eV at 1 MHz to 0.37 eV at 134 Hz. The conductivity spectra of sample were studied as a function in temperature of the in situ measurements. The ionic conductivity (dc) of LDH increased as the in situ temperature increased.  相似文献   

9.
Journal of Radioanalytical and Nuclear Chemistry - A layered double hydroxide@montmorillonite nanocomposite (LDH@MMT) was synthesized by the coating of growing LDH layers onto the MMT surface...  相似文献   

10.
Adsorption of a weak acid dye, methyl orange (MO) by calcined layered double hydroxides (LDO) with Zn/Al molar ratio of 3:1 was investigated. In the light of so called "memory effect," LDO was found to recover their original layered structure in the presence of appropriate anions, after adsorption part of MO(-) and CO(2-)(3) (come from air) intercalated into the interlayer of LDH which had been supported by XRD and ICP. The results of adsorption experiments indicate that the maximum capacity of MO at equilibrium (Q(e)) and percentage of adsorption (eta%) with a fixed adsorbent dose of 0.5 g L(-1) were found to be 181.9 mg g(-1) and 90.95%, respectively, when MO concentration, temperature, pH and equilibrium time were 100 mg L(-1), 298 K, 6.0 and 120 min, respectively. The isotherms showed that the adsorption of MO by Zn/Al-LDO was both consistent with Langmuir and Freundlich equations. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model. The calculated value of E(a) was found to be 77.1 kJ mol(-1), which suggests that the process of adsorption of methyl orange is controlled by the rate of reaction rather than diffusion. The possible mechanism for MO adsorption has also been presumed. In addition, the competitive anions on adsorption and the regeneration of Zn/Al-LDO have also been investigated.  相似文献   

11.

Double-charged diazabicyclo[2.2.2]octane (DABCO) was immobilized on the inner surface of a nanomaterial composed of the layered double hydroxides (LDHs) of Zn(II) and Cr(III). The resulting material was characterized by SEM, FT-IR and XRD techniques. This novel nanocomposite has been used as a highly porous fiber coating for solid-phase microextraction (SPME) of phenol and various chloro-, nitro- and aminophenols. The LDH nanocomposite was deposited on a stainless steel wire and then evaluated with respect to the extraction of phenolic compounds from water samples. The effects of temperature, extraction time, ionic strength, stirring rate, pH, and desorption temperature and time on the extraction were optimized. The compounds were then separated and quantified by GC-MS. Under optimum conditions, the repeatability for a single fiber (for n = 3 and expressed as the relative standard deviation) is between 2.3 and 7.2 %. The detection limits are between 0.02 and 6.3 pg mL−1. The method is simple, rapid, and inexpensive. The fiber is thermally stable and its use gives high recoveries.

Double-charged diazabicyclo[2.2.2]octane (DABCO) was immobilized on the inner surface of a nanomaterial composed of the layered double hydroxides (LDHs) of Zn(II) and Cr(III). This novel nanocomposite has been used as a highly porous fiber coating for solid-phase microextraction (SPME) of phenol and various chloro-, nitro- and aminophenols.

  相似文献   

12.
The soap-free emulsion polymerization has been applied for preparing the surfactant-free polystyrene/layered double hydroxide exfoliated nanocomposite. The XRD and TEM determinations have been used to monitor the changes of interlayer spacing and morphology during polymerization. The results show that the obtained nanocomposite has the homogeneous structure of polymeric and inorganic components. Due to the absence of organic surfactant, the PS/LDH nanocomposite shows a remarked improvement on the onset decomposition temperature compared with virgin PS.  相似文献   

13.
A series of blue dye molecules, Evans blue (EB), Chicago sky blue (CB), Niagara blue (NB) were incorporated by direct co-precipitation within the galleries of negatively charge layered double hydroxide (LDH). The materials of cation composition Zn/Al = 2 lead to well-defined organic inorganic assemblies. The molecular arrangement of the interleaved dye molecule is proposed by 1D electronic density projection along the stacking direction for the hydrothermally treated samples with alternatively a highly inclined orientation of EB and CB and a parallel-bilayer arrangement for NB. Blue coloured LDH assemblies were subsequently dispersed into polystyrene (PS). It was found that the hybrid fillers do not interfere in the radical polymerization of styrene, giving rise to similar molecular weight and polydispersity than filler free PS, while higher glass transition temperatures were obtained for the nanocomposites. This was consistent with the rheological behaviour with the observation for LDH/NB filler based nanocomposite of shear thinning exponent different from zero, underlining frictional interaction between filler and PS chain. The absorption maximum slightly blue-shifted for the hybrid filler in comparison to the corresponding organic dye was found unmodified for the PS nanocomposite, thus giving rise to blue coloured plastic films, reminiscent somehow of the blue Maya effect.  相似文献   

14.
微波法合成乙二醇插层镍铝层状双金属氢氧化物   总被引:1,自引:0,他引:1  
乙二醇(EG)插层层状双金属氢氧化物(LDH)可作为层间催化反应器,用于原油中环烷酸与EG的酯化脱酸反应,但其合成过程需要较长时间。 以硝酸根型镍铝LDH为前体,在KOH促进下,采用微波辅助的离子交换法合成EG插层LDH,省时节能,提高效率。 考察了微波时间、微波温度和微波功率对EG插层LDH结构的影响。 并用XRD、FT-IR和TG-DSC等比较了微波法和常规方法合成的EG插层LDH的性质。 结果表明,微波辐射能提供高能量,促进待交换阴离子向层间的扩散,并减弱层板与层间原有阴离子间的作用力,在微波温度为120 ℃,微波时间为10 min和微波功率550 W的条件下,即可得到结晶度高的EG插层LDH。 微波法合成的EG插层LDH与常规方法合成的具有相似的性质和更高的结晶度,而合成时间可由12 h大幅缩短至10 min。  相似文献   

15.
杜隆超  瞿保钧 《中国化学》2006,24(10):1342-1345
The interlayer surface of MgAl layered double hydroxide (MgAl-LDH) was modified by exchanging about half of the interlayer nitrate anions by dodecyl sulfate anions (DS) to get MgAl(H-DS) LDH, and then the MgAl(H-DS) was melt intercalated by LLDPE to get the LLDPE/MgAl-LDH exfoliation nanocomposites. The samples were characterized by Fourier transform infrared (PTIR) spectroscopy, X-ray diffraction (XRD), ion chromatography, transmission electron microscopy (TEM), and thermogravimetry analysis (TGA). The nanoscale dispersion of MgAl-LDH layers in the LLDPE matrix was verified by the disappearance of (001) XRD reflection of the modified MgAl-LDH and by the TEM observation. The TGA profiles of LLDPE/MgAl-LDH nanocomposites show a faster charring process between 210 and 370 ℃ and a higher thermal stability above 370 ℃than LLDPE. The decomposition temperature of the nanocomposites with 10 wt% MgAl(H-DS) can be 42 ℃ higher than that of LLDPE at 40% weight loss.  相似文献   

16.
An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG‐MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X‐ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate.  相似文献   

17.
The intercalation of water-soluble p-sulfonated calix[4 and 6]arene (CS4 and CS6) in the interlayer of the Mg-Al and Zn-Al layered double hydroxide (LDH) by the coprecipitation method has been investigated, as well as the adsorption properties of the resulting CS/LDHs for benzyl alcohol (BA) and p-nitrophenol (NP) to prepare new microporous organic-inorganic hybrid adsorbents. The amount and arrangement of CS intercalated was different by the kind of the host metal ions. CS4 cavity axis was perpendicular for the Mg-Al LDH basal layer and parallel for the Zn-Al LDH basal layer, while CS6 cavity axis was perpendicular for both the LDH basal layers. In the BET surface area measurement, the surface area of the Zn-Al/CS4/LDH was four times than that of the Mg-Al/CS4/LDH, expecting that the former has higher adsorption capacity than the latter. In fact, the adsorption ability of the CS/LDHs for BA and NP in aqueous solution was found to be larger in the Zn-Al/CS4/LDH than in the Mg-Al/CS4/LDH. In addition, the adsorption ability of both the LDHs was larger in the CS6/LDHs than in the CS4/LDHs. These results were explained by the difference in the amount and arrangement of CS intercalated in the LDH interlayer space.  相似文献   

18.
硫代硫酸根插层水滑石的层间限域反应   总被引:1,自引:0,他引:1  
将无机阴离子硫代硫酸根(S2O23-)限域在锌铝水滑石(LDH)层间,并研究了其在水滑石层板限域空间内被铁氰根(Fe(CN)63-)氧化的反应过程.通过X射线衍射(XRD)和傅里叶变换红外(FTIR)光谱仪对反应的中间产物和最终产物进行的表征发现,氧化产物连四硫酸根(S4O62-)进入到溶液中,还原产物亚铁氰根(Fe(CN)64-)则保留在水滑石层间.进一步系统研究了该反应的动力学过程,考察了硫代硫酸根插层水滑石用量、铁氰化钾浓度和温度对反应的影响.结果表明该氧化还原反应符合球体内扩散模型.根据温度对反应速率影响,得出了该反应的表观活化能为24.6kJ.mol-1,比相同条件下溶液中反应活化能降低了约13.7kJ.mol-1.采用分子动力学(MD)模拟计算了水分子含量对硫代硫酸根插层水滑石层间距大小的影响.计算表明:在水溶液环境中,水滑石微反应器的尺寸在特定方向具有可调控性.根据实验表征和理论计算对该层间反应的机理进行了探讨.因此,该类层状材料可以作为一种新型纳米级微反应器应用于调控化学反应.  相似文献   

19.
The adsorption of naphthol green B (NGB) by Mg/Al‐LDO (layered double oxides) with a Mg/Al molar ratio of 3:1 was investigated in a batch mode. Our study indicates that the maximum capacity of NGB adsorption at equilibrium is 193.4 mg and the percentage of absorption is 96.7%, with an adsorbent dose of 1.0 g/L under the following condition: 200 mg/L NGB concentration, temperature 298 K, pH 10.0 and an equilibrium time of 80 min. Langmuir and Freundlich adsorption models were used for fitting the isotherms, and the thermodynamic parameters have been calculated, which showed that the adsorption process was spontaneous and exothermic in nature. In the light of so called "memory effect", the Mg/Al‐LDO was found to recover their original layered structure after adsorption, and part of NGB ions intercalated into the interlayer of LDH (layered double hydroxides), which has been supported by XRD and FTIR. In addition, the competitive anions for adsorption and the regeneration of Mg/Al‐LDO have also been investigated.  相似文献   

20.
A series of hybrid organic-inorganic nanocomposite materials was synthesized by three different procedures using sodium dodecyl sulfate (DDS) and magnesium-aluminum layered double hydroxide (Mg/Al LDH with a Mg/Al molar ratio of 2 to 5). Both the pH of the exchange medium (6.5 to 10) and the Mg/Al molar ratio of the LDH affected the basal spacing, the content of DDS retained and the orientation of the DDS chains within the interlamellar space. For LDH with higher charge density (Mg/Al=2 and 3), DDS molecules likely formed a perpendicular monolayer within the LDH interlayer and the solution pH had little effect on the basal spacing, with a mean and standard deviation of 25.5+/-0.4 A. However, for LDH with lower charge density (Mg/Al=4 and 5), DDS molecules more likely formed an interpenetrating bilayer, and the basal spacing significantly increased with increasing pH, with a mean and standard deviation of 32.7+/-5.2 A. Sorption of trichloroethylene and tetrachloroethylene by DDS-LDH varied with synthesis conditions, LDH type and DDS configuration in the interlayer. DDS-Mg(3)Al-LDH had the highest affinity for both trichloroethylene and tetrachloroethylene in water, either comparable to or as much as four times higher than other clay-derived sorbents, followed by DDS-Mg(4)Al-LDH and DDS-Mg(5)Al-LDH. DDS-Mg(2)Al-LDH had the lowest sorption affinity although the highest amount of DDS. The pH of the exchange solution also affected the amount of DDS retained by the LDH as well as the sorption efficiency. Mg(3)Al-LDH has a charge equivalent area of 32.2 A(2)/charge, which allows the formation of optimal DDS configuration within its interlayer, thus resulting in the highest affinity for the chlorinated compounds. The DDS-Mg/Al-LDHs can be easily synthesized either ex situ or in situ at low temperature, indicating the feasibility of practical applications. The results obtained by controlling the synthesis procedure suggest that different arrangements of DDS molecules in the LDH interlayers can be obtained and optimized for the sorption of specific sorbates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号