首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrospray laser desorption ionization mass spectrometry (ELDI/MS) was used to rapidly distinguish authentic banknotes from counterfeits of the US dollar and the New Taiwan dollar. The banknotes' surfaces were irradiated with a pulsed ultraviolet laser, after which the desorbed ink compounds entered an electrospray plume and formed ions via interactions with charged solvent species. Authentic banknotes were found to differ from their counterfeit equivalents in their surface chemical compositions. The detected chemical compounds included various polymers, plasticizers and inks; these results were comparable with those obtained using solvent extraction followed by electrospray ionization mass spectrometry analysis. Because of the high spatial resolution of the laser beam, ELDI/MS analysis resulted in minimal damage to the banknotes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Multiphoton ionization mass spectra of nonvolatile molecules laser desorbed into a supersonic beam are recorded. It is shown by indirect measurements that the laser desorption of neutrals is not mass limited, but lead to the formation of neutrals with intesities large enough for intense signals. To investigate the efficiency of the multiphoton ionization process with varying laser pulse durations, simultaneous laser pulses of 500 fs and 5 ns or 100 fs and 5 ns have been applied to the neutral beam. The energies of both femtosecond and nanosecond laser pulses are held in a comparable magnitude, and thus produce, in the resulting ion intensity, very large differences up to 4 orders of magnitude. For larger evaporated molecules (> 500 u) the ionization efficiency from nanosecond laser pulses drops significantly in comparison to femtosecond laser pulse excitation. A variety of possible reasons for the different ionization and dissociation behavior in femtosecond and nanosecond laser pulse excitations are discussed in this paper. It is rationalized that even with very short laser pulses and large molecules the “ladder switching model” for ionization and fragmentation is valid.  相似文献   

3.
The desorption of neutrals, alkali ions and quasimolecular ions of sucrose was studied as function of substrate temperature in laser desorption mass spectrometry. These phenomena were also investigated in thermal desorption experiments. It was concluded that in these experiments gas phase cationization is the major ionization process.  相似文献   

4.
5.
Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric‐pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H]+ and [M ? H]? in the positive and the negative mode, respectively. It was found that FAPA–MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof‐of‐principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA–MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet‐undiscovered matrix and sample surface effects of ionization pathways in the afterglow region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
对7种真假纸币样本和2003年~2008年的32宗诈骗案件中共计225件被染黑的真假纸币物证,采用微束X射线荧光光谱仪(micro-XRF)分析其二维元素分布.结果表明:纸币元素分布特征都具有特定性,相同面额相同年版的纸币元素分布特征相同,相同面额不同年版的纸币元素分布特征有差异;真假纸币元素分布特征存在显著差异;被染黑的纸币元素分布特征与原纸币相同;因而可根据被染黑真假纸币的元素分布特征,鉴定其真伪并判断纸币种类.微束XRF分析在实际案件中黑色纸张物证的检验准确率为100%.因此,微束XRF技术能有效检验被染料染黑的真假纸币,具有灵敏度高,分析过程中不破坏样品,结果准确的特点,在该类物证的检验中具有较高的应用价值.  相似文献   

7.
Molecular dynamics simulations of matrix‐assisted laser desorption/ionization were carried out to investigate laser pulse width and fluence effects on primary and secondary ionization process. At the same fluence, short (35 or 350 ps) pulses lead to much higher initial pressures and ion concentrations than longer ones (3 ns), but these differences do not persist because the system relaxes toward local thermal equilibrium on a nanosecond timescale. Higher fluences accentuate the initial disparities, but downstream differences are not substantial. Axial velocities of ions and neutrals are found to span a wide range, and be fluence dependent. Total ion yield is only weakly dependent on pulse width, and consistent with experimental estimates. Secondary reactions of matrix cations with analyte neutrals are efficient even though analyte ions are ablated in clusters of matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A transmission geometry optical configuration allows for smaller laser spot size to facilitate high‐resolution matrix‐assisted laser/desorption ionization (MALDI) mass spectrometry. This increase in spatial resolution (ie, smaller laser spot size) is often associated with a decrease in analyte signal. MALDI‐2 is a post‐ionization technique, which irradiates ions and neutrals generated in the initial MALDI plume with a second orthogonal laser pulse, and has been shown to improve sensitivity. Herein, we have modified a commercial Orbitrap mass spectrometer to incorporate a transmission geometry MALDI source with MALDI‐2 capabilities to improve sensitivity at higher spatial resolutions.  相似文献   

9.
In the matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS) analysis of some quaternary ammonium salts (QASs), very clean spectra of the quaternary ammonium ions were recorded with a strong matrix suppression effect (MSE). The QASs also showed a considerable analyte suppression effect (ASE). It was demonstrated that the MSE and ASE of the QASs can be explained well by the cluster ionization model. According to this model, MALDI ions are formed from charged matrix/analyte clusters. Various analyte ions and matrix ions might coexist in the cluster, and they will compete for the limited number of net charges available. If enough quaternary ammonium ions are present in the cluster, they will take away the net charges, thus resulting in the MSE and ASE. Our results also suggest that ‘the cluster ionization model’ is not in conflict with ‘the theory of ionization via secondary gas‐phase reactions’. The initial MALDI ions produced from charged matrix/analyte clusters will collide with other molecules or ions in the MALDI plume. Depending on the properties of the initial ions and the composition of the MALDI plume, secondary gas‐phase reactions might result from these collisions. The final ions observed are the combined results of ‘cluster ionization’ and ‘ionization via secondary gas‐phase reactions’. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Laser desorption/ionization combined with pulsed (time-of-flight or Fourier transform ion cyclotron resonance) mass spectrometric detection is a powerful technique for analysis of involatile compounds and mixtures. Such experiments were originally conducted with pulsed CO2 lasers. Although a pulsed CO2 laser can be operated in single-shot mode, Nd: YAG lasers perform best with multiple flashes for warm-up before the final Q-switch output light pulse, thus creating the need to synchronize the desired final laser-output pulse with the event sequence for mass spectrometric analysis. In this paper, we describe a new and simple interface (both optical and electronic components) between a Continuum (formerly Quantel) Model YG 660A Nd:YAG laser and an Extrel FTMS-2000 mass spectrometer. The optics are modified from a prior pulsed CO2 laser interface from Extrel. Synchronization between the Nd:YAG laser and the mass spectrometer event sequence is achieved by means of a simple timing circuit that uses an inexpensive pulsing device and is triggered by pulses generated directly from the Extrel 1280 data system and cell controller, in contrast to the only prior published method that required an auxiliary microcomputer. The present interface method is highly flexible, and makes possible complex sequence events involving laser pulses for e.g.: desorption/ionization of solids; photoionization of gaseous neutrals; and photodissociation and photodetachment of gaseous ions.  相似文献   

11.
Polyethylene's inert nature and difficulty to dissolve in conventional solvents at room temperature present special problems for sample preparation and ionization in mass spectrometric analysis. We present a study of ionization behavior of several polyethylene samples with molecular masses up to 4000 Da in laser desorption ionization (LDI) time-of-flight mass spectrometers equipped with a 337 nm laser beam. We demonstrate unequivocally that silver or copper ion attachment to saturated polyethylene can occur in the gas phase during the UV LDI process. In LDI spectra of polyethylene with molecular masses above approximately 1000 Da, low mass ions corresponding to metal-alkene structures are observed in addition to the principal distribution. By interrogating a well-characterized polyethylene sample and a long chain alkane, C94H190, these low mass ions are determined to be the fragmentation products of the intact metal-polyethylene adduct ions. It is further illustrated that fragmentation can be reduced by adding matrix molecules to the sample preparation.  相似文献   

12.
The dependence of the signal intensity of analyte and matrix ions on laser fluence was investigated for infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry using a flat-top laser beam profile. The beam of an Er : YAG laser (wavelength, 2.94 microm; pulse width, 90 ns) was coupled into a sapphire fiber and the homogeneously illuminated end surface of the fiber imaged on to the sample by a telescope. Three different laser spot sizes of 175, 350 and 700 microm diameter were realized. Threshold fluences of common IR matrices were determined to range from about 1000 to a few thousand J m(-2), depending on the matrix and the size of the irradiated area. In the MALDI-typical fluence range, above the detection threshold ion signals increase strongly with fluence for all matrices, with a dependence similar to that for UV-MALDI. Despite the strongly different absorption coefficients of the tested matrices, varying by more than an order of magnitude at the excitation laser wavelength, threshold fluences for equal spot sizes were found to be comparable within a factor of two. With the additional dependence of fluence on spot size, the deposited energy per volume of matrix at threshold fluence ranged from about 1 kJ mol(-1) for succinic acid to about 100 kJ mol(-1) for glycerol.  相似文献   

13.
One of the major problems in cluster beam experiments with uncharged clusters is to relate the detected distribution of cluster ions to the original distribution of the neutrals. Fragmentation of the clusters, differences in ionization efficiencies, and desorption of ligands for chemically reacted clusters distort the initial distribution. In this contribution the abundances of the neutral and the ionized particles will be related by rate equations in terms of phenomenological rate constants. Two approaches are chosen. In the more simple one the ionization and decay processes are fast and take place during the excitation pulse. In the second approach delayed processes are also allowed. In both cases recursion formulas are derived as analytical solutions of the coupled rate equations for the time evolution of the neutral and ionized cluster intensities. The general solutions contain a considerable number of parameters which have to be reduced by experimental conditions and observations. Applications are discussed.  相似文献   

14.
A two‐step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI‐ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three‐dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25‐octabutoxy‐29H,31H‐phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Laser induced liquid beam ionization/desorption mass spectrometry (LILBID-MS) is a new desorption method recently developed in our laboratory. This method allows ions to be desorbed directly from the liquid phase into the high-vacuum region of a mass spectrometer. This method has now been applied to the detection of noncovalent protein-protein complexes. The example given in this paper is the quartenary complex of human hemoglobin. For the first time, the intact hemoglobin could be detected by laser desorption mass spectrometry. Furthermore, evidence for the specificity of the complex is given.  相似文献   

16.
Mechanistic arguments relative to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) address observations that predominately singly charged ions are detected. However, recently a matrix assisted laser ablation method, laserspray ionization (LSI), was introduced that can use the same sample preparation and laser as MALDI, but produce highly charged ions from proteins. In MALDI, ions are generated from neutral molecules by the photon energy provided to a matrix, while in LSI ions are produced inside a heated inlet tube linking atmospheric pressure and the first vacuum region of the mass spectrometer. Some LSI matrices also produce highly charged ions with MALDI ion sources operated at intermediate pressure or high vacuum. The operational similarity of LSI to MALDI, and the large difference in charge states observed by these methods, provides information of fundamental importance to proposed ionization mechanisms for LSI and MALDI. Here, we present data suggesting that the prompt and delayed ionization reported for vacuum MALDI are both fast processes relative to producing highly charged ions by LSI. The energy supplied to produce these charged clusters/droplets as well as their size and time available for desolvation are determining factors in the charge states of the ions observed. Further, charged droplets/clusters may be a common link for ionization of nonvolatile compounds by a variety of MS ionization methods, including MALDI and LSI.  相似文献   

17.
In the present article a novel approach for rapid product screening of fast reactions in IR-laser-heated liquid microbeams in a vacuum is highlighted. From absorbed energies, a shock wave analysis, high-speed laser stroboscopy, and thermodynamic data of high-temperature water the enthalpy, temperature, density, pressure, and the reaction time window for the hot water filament could be characterized. The experimental conditions (30 kbar, 1750 K, density approximately 1 g/cm3) present during the lifetime of the filament (20-30 ns) were extreme and provided a unique environment for high-temperature water chemistry. For the probe of the reaction products liquid beam desorption mass spectrometry was employed. A decisive feature of the technique is that ionic species, as well as neutral products and intermediates may be detected (neutrals as protonated aggregates) via time-of-flight mass spectrometry without any additional ionization laser. After the explosive disintegration of the superheated beam, high-temperature water reactions are efficiently quenched via expansion and evaporative cooling. For first exploratory experiments for chemistry in ultrahigh-temperature, -pressure and -density water, we have chosen resorcinol as a benchmark system, simple enough and well studied in high-temperature water environments much below 1000 K. Contrary to oxidation reactions usually present under less extreme and dense supercritical conditions, we have observed hydration and little H-atom abstraction during the narrow time window of the experiment. Small amounts of radicals but no ionic intermediates other than simple proton adducts were detected. The experimental findings are discussed in terms of the energetic and dense environment and the small time window for reaction, and they provide firm evidence for additional thermal reaction channels in extreme molecular environments.  相似文献   

18.
Gas phase ions for valine, glutamate, phenylalanine, angiotensin, bradykinin, LH-RH, and bombesin were formed through matrix assisted laser desorption-ionization (MALDI) in air at ambient pressure and were characterized by ion mobility spectrometry (IMS). The IMS drift tube was operated at 100 °C with air as the drift gas and without an ion shutter. Responses were obtained using α-cyano-4-hydroxycinnamic acid as the matrix and a Nd-YAG laser at 355 nm with an unfocused beam at 6 mJ per pulse and 7 mm2 cross section. Matrix and analyte were applied to a borosilicate glass target and microgram amounts of sample provided responses lasting 10 to 15 s with the laser operated at 11 Hz. Detection limits for the peptides were estimated to be 10 to 100 pmol per laser shot. The mobility spectra for individual amino acids and peptides exhibited multiple peaks with spectral distortions and raised baselines. These features and calculated values for reduced mobilities were consistent with the existence of clusters between analyte ions and matrix neutrals and the dissociation of these clusters in the drift region of the analyzer. Mobility spectra with distinctive peaks were not obtained for MALDI-IMS of peptides larger than 5700 amu, though ion formation was suggested from the depletion of matrix signal.  相似文献   

19.
The effect of the (initial) sample temperature on the threshold laser fluences and the increase of signal intensities with laser fluence has been investigated for UV-laser desorbed 2,5-dihydroxybenzoic acid (DHB) ions and (photoionized) neutral DHB molecules using a ‘flat-top’ laser profile for desorption. A linear increase in threshold fluence with decreasing temperature was observed for neutrally desorbed molecules as well as ions in the investigated temperature range of approximately − 100°C to + 20°C. The results are discussed and interpreted in the framework of a quasi-thermal desorption model (IJMSIP 141 (1995) 127–148).  相似文献   

20.
We show here that ‘double-barrelled’ laser desorption/resonance-enhanced multi-photon ionization mass spectrometry has many advantages over traditional single-step desorption/ionization techniques, particularly if combined with Reflectron-Time-of-Flight mass analysers. We demonstrate the effectiveness of this technique for large labile biomolecules, namely native chlorophylls, porphyrins and a peptide, as examples of structural and mass analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号