首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A novel ion/molecule reaction was observed to occur under electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photo ionization (APPI) conditions, leading to dimerization of ionized 4‐(methyl mercapto)‐phenol followed by fast H· loss. The reaction is particularly favored during ESI, which suggests that this ion/molecule reaction can occur both in the solution inside the ESI‐charged droplets and in the gas‐phase environment of most other atmospheric pressure ionization techniques. The dimerization reaction is inherent to the electrolytic process during ESI, whereas it is more by ion/molecule chemistry in nature during APCI and APPI. From the tandem mass spectrometry (MS/MS) data, accurate mass measurements, hydrogen/deuterium (H/D) exchange experiments and density functional theory (DFT) calculations, two methyl sulfonium ions appear to be the most likely products of this electrophilic aromatic substitution reaction. The possible occurrence of this unexpected reaction complicates mass spectral data interpretation and can be misleading in terms of structural assignment as reported herein for 4‐(methyl mercapto)‐phenol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The atmospheric pressure ionization (API) source for a commercial mass spectrometer was modified to operate as a dual source in both the electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) techniques by simultaneously utilizing the electrospray probe and the corona discharge needle. A switching box was designed to operate in either manual or programmable modes to permit rapid switching between ionization techniques without changing sources, probes, or breaking vacuum. The source can be operated using the following ionization techniques: ESI only, APCI only, ESI/APCI simultaneously, and ESI/APCI alternatingly. The optimum operating conditions for these ionization techniques were similar to the manufacturer’s original specifications except that the APCI flow rate was lower (~50 µL/min versus 1000 µL/min) and externally heated nebulizing gas was found to be desirable. A four-component mixture, introduced by flow injection, was used to demonstrate the versatility of the dual ESI/APCI source.  相似文献   

3.
Standard field desorption (FD) ionization is implemented under high vacuum condition. In this paper, non‐vacuum FD is performed under a super‐atmospheric pressure environment using untreated tungsten wires as FD emitter, and the ion source was coupled to a commercial linear ion trap mass spectrometer. The operating pressure of the ion source was 6 bars which was high enough to provide sufficient dielectric strength to the working gas so that the high voltage that was required for FD could be applied to the emitter without occurrence of electrical discharge. Non‐volatile sample deposited on the bare tungsten wire FD emitter was heated by flowing direct current through the emitter. Similar to vacuum FD, the formation of conical protrusion of the liquefied sample layer under the strong electric field was also observed. Using the present ion source, high pressure field‐desorption of polar neutral compounds, organic salts and ionic liquids is demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS.  相似文献   

5.
The objective of this work was to compare direct infusion in a Q-TOF mass spectrometer through three different atmospheric pressure sources, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) coupled to a high resolution Q-TOF mass spectrometer. A complex mixture of PAH and oxy-PAHs, obtained after the air oxidation of fluoranthene on mineral substrates, was used to compare the different ionization abilities of these sources. Here, we propose analytical methods for the use of all sources. Final goal was to provide background to the choice of the most appropriate source in order to analyze complex organic mixtures as those encountered in polluted soils, water, sediments, as well as in petroleum.  相似文献   

6.
High pressure electrospray ionization mass spectrometry has been performed by pressurizing a custom made ion source chamber with compressed air to a pressure higher than the atmospheric pressure. The ion source was coupled to a commercial time-of-flight mass spectrometer using a nozzle-skimmer arrangement. The onset voltage for the electrospray of aqueous solution was found to be independent on the operating pressure. The onset voltage for the corona discharge, however, increased with the rise of pressure following the Paschen’s law. Thus, besides having more working gas for the desolvation process, gaseous breakdown could also be avoided by pressurizing the ESI ion source with air to an appropriate level. Stable electrospray ionization has been achieved for the sample solution with high surface tension such as pure water in both positive and negative ion modes. Fragmentation of labile compounds during the ionization process could also be reduced by optimizing the operating pressure of the ion source.  相似文献   

7.
Super‐atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4–5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H]+ which was not so common in APCI, was also observed with high ion abundance under super‐atmospheric pressure condition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Poly(2‐ethyl‐2‐oxazoline), a synthetic polymer was analysed by mass spectrometry using different ion sources. Two distributions could be identified in the mass spectra which related to two different polymer series (one with hydrogen and hydroxyl end‐groups and the other with methyl and hydroxyl end‐groups). The fragmentation behaviour of the protonated oligomers was studied in a quadrupole time‐of‐flight mass spectrometer (MS) with electrospray, atmospheric pressure chemical ionization and direct analysis in real time soft ionization techniques. Three product ion series were identified in the MS/MS spectra independently of the ion source used. Based on the results, a mechanism was proposed for the dissociation by means of the accurate mass of the product ions, pseudo MS3 experiments and the energy dependence of the product ion intensity, i.e. breakdown curves. The survival yield method was used to highlight the correlation between the size of the oligomers and the laboratory frame collision energy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
When a standard atmospheric pressure chemical ionization (APCI) or atmospheric pressure photoionization (APPI) ion source is used without applying the corona discharge or photoirradiation, atmospheric pressure thermospray ionization (APTSI) of various compounds can be achieved. Although largely ignored, this phenomenon has recently gained interest as an alternative ionization technique. In this study, this technique is performed for the first time on a miniaturized scale using a microchip nebulizer. Sample ionization with the presented microchip‐APTSI (µAPTSI) is achieved by applying only heat and gas flow to a nebulizer chip, without any other methods to promote gas‐phase ionization. To evaluate the performance of the described µAPTSI setup, ionization efficiency for a set of test compounds was monitored as the microchip positioning, temperature, nebulizer gas flow rate, sample solution composition, and solvent flow rate were varied. The µAPTSI mass spectra of the test compounds were also compared to those obtained with ESI and APCI. The µAPTSI produces ESI‐like spectra with low background noise, favoring the formation of protonated or deprotonated molecules of compounds that are ionizable in solution. Multiple charging of peptides without in‐source fragmentation was also observed. Unlike ESI, however, the µAPTSI source can tolerate the presence of mobile phase additives like trifluoroacetic acid (TFA) without significant ion suppression. The µAPTSI source can be used with standard mass spectrometer ion source hardware, being a unique alternative to the present interfacing techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H]+ dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M–H]?, while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high‐resolution mass spectrometry in a quadrupole‐Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N‐(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS3 and MS4 spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high‐performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) and electrospray ionization (ESI)-MS can cover the analysis of analytes from low to high polarities. Thus, an ion source that possesses these two ionization functions is useful. Atmospheric surface-assisted ionization (ASAI), which can be used to ionize polar and nonpolar analytes in vapor, liquid, and solid forms, was demonstrated in this study. The ionization of analytes through APCI or ESI was induced from the surface of a metal substrate such as a titanium slab. ASAI is a contactless approach operated at atmospheric pressure. No electric contacts nor any voltages were required to be applied on the metal substrate during ionization. When placing samples with high vapor pressure in condensed phase underneath a titanium slab close to the inlet of the mass spectrometer, analytes can be readily ionized and detected by the mass spectrometer. Furthermore, a sample droplet (~2 μL) containing high-polarity analytes, including polar organics and biomolecules, was ionized using the titanium slab. One titanium slab is sufficient to induce the ionization of analytes occurring in front of a mass spectrometer applied with a high voltage. Moreover, this ionization method can be used to detect high volatile or polar analytes through APCI-like or ESI-like processes, respectively.  相似文献   

12.
A new tandem time‐of‐flight mass spectrometer with an electrospray ionization ion source ‘ESI‐TOF/quadTOF’ was designed and constructed to achieve the desired aim of structural elucidation via high‐energy collision‐induced dissociation (CID), and the simultaneous detection of all fragment ions. The instrument consists of an orthogonal acceleration‐type ESI ion source, a linear TOF mass spectrometer, a collision cell, a quadratic‐field ion mirror and a microchannel plate detector. High‐energy CID spectra of doubly protonated angiotensin II and bradykinin were obtained. Several fragment ions such as a‐, d‐, v‐ and w‐type ions, characteristic of high‐energy CID, were clearly observed in these spectra. These high‐energy CID fragment ions enabled confirmation of the complete sequence, including leucine–isoleucine determinations. It was demonstrated that high‐energy CID of multiply protonated peptides could be achieved in the ESI‐TOF/quadTOF. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we describe results based on the combination of atmospheric pressure photoionization (APPI) with atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). The main purpose of combining more than one ionizer is to extend the range of compounds that can be simultaneously analyzed. Three modes of operation are presented; use of either ionizer, simultaneous use of two ionizers, and rapid switching between ionizers during a single chromatographic run. The dual ionizer configurations only minimally affect the performance of either ionizer relative to the standard single-ionizer sources. However, it is observed that the operation of both ionizers together does not typically give the sum signal from either source operating alone. For APCI/APPI the signal can range from less than that of either source alone to the sum of the two individual sources. For ESI/APPI, we observed large suppressions of the ESI multiply-charged signal of proteins when the APPI source was on. These behaviors are presumed to be due to the interaction of the initially formed ions by both sources and attests to the importance of ion-molecule reactions that occur during and after the primary ionization events. We give examples of compounds that are preferentially ionized by either APPI, APCI or ESI and present thermochemical arguments based on molecular structure and functionality to explain this behavior. The dual source is also shown to be able to operate in negative ion mode opening up the potential to conduct wide ranging chemical analyses.  相似文献   

14.
We investigated the application of a high‐resolution Orbitrap mass spectrometer equipped with an electrospray ionization (ESI) source and a matrix‐assisted laser desorption/ionization‐time‐of‐flight (MALDI‐TOF) mass spectrometer to the metabolite profiling of a model small interfering RNA (siRNA) duplex TSR#34 and compared their functions and capabilities. TSR#34 duplex was incubated in human serum in vitro, and the duplex and its metabolites were then purified by ion exchange chromatography in order to remove the biological matrices. The fraction containing the siRNA duplex and its metabolites was collected and desalted and then subjected to high‐performance liquid chromatography (HPLC) equipped with a reversed phase column. The siRNA and its metabolites were separated into single strands by elevated chromatographic temperature and analyzed using the ESI‐Orbitrap or the MALDI‐TOF mass spectrometer. Using this method, the 5' and/or 3' truncated metabolites of each strand were detected in the human serum samples. The ESI‐Orbitrap mass spectrometer enabled differentiation between two possible RNA‐based sequences, a monoisotopic molecular mass difference which was less than 2 Da, with an intrinsic mass resolving power. In‐source decay (ISD) analysis using a MALDI‐TOF mass spectrometer allowed the sequencing of the RNA metabolite with characteristic fragment ions, using 2,4‐dihydroxyacetophenone (2,4‐DHAP) as a matrix. The ESI‐Orbitrap mass spectrometer provided the highest mass accuracy and the benefit of on‐line coupling with HPLC for metabolite profiling. Meanwhile, the MALDI‐TOF mass spectrometer, in combination with 2,4‐DHAP, has the potential for the sequencing of RNA by ISD analysis. The combined use of these methods will be beneficial to characterize the metabolites of therapeutic siRNA compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this work we describe a micro-electrospray ionization source equipped with an atmospheric pressure external ion shutter. The solenoid-activated shutter prevents the electrospray plume from entering the inlet capillary unless triggered to the 'open' position. When in the 'closed' position, a stable electrospray plume is maintained between the electrospray ionization (ESI) emitter and the electrically isolated face of the shutter. When the shutter is triggered, a 'slice' of ions is allowed to enter the inlet capillary and is subsequently accumulated in an external ion reservoir comprised of a radio frequency only (rf-only) hexapole and a pair of electrostatic elements. Following ion accumulation in the external ion reservoir, intact molecular ions of proteins, oligonucleotides, and noncovalent complexes can be stored for extended intervals (>30 minutes) prior to being transferred to the Fourier transform ion cyclotron resonance (FTICR) trapped ion cell for mass analysis. By introducing reactive gases directly into the external ion reservoir during the storage interval, ion-molecule reactions, such as H/D exchange, can be performed at high effective pressures. This scheme obviates the need for the long reaction times and delays associated with restoring base pressure in the trapped ion cell and allows H/D exchange reactions to be conducted in a fraction of the time required using conventional in-cell exchange approaches. The back face of the shutter arm contains an elastomeric material which can be positioned to seal the inlet to the mass spectrometer resulting in lower base pressure in the ion reservoir and the FTICR cell. Additionally, it is noted that blocking the ESI plume during non-accumulation events results in reduced fouling of the source electrodes and longer times between required source cleaning.  相似文献   

16.
A corona discharge ion source operating at atmospheric pressure in the point-to-plane configuration was constructed by reconfiguring the ion source of a commercial electrospray ionization (ESI) quadrupole mass spectrometer. This new source allows direct air analysis without modification to the mass spectrometer. Detection and quantitation of semi-volatile compounds in air is demonstrated. The analytical performance of the system was established using the chemical warfare agent simulants methyl salicylate and dimethyl methylphosphonate. Limits of detection are 60 pptr in the negative-ion mode and 800 pptr in the positive-ion mode for methyl salicylate and 800 pptr in the negative-ion mode and 3.6 ppb in the positive-ion mode for dimethyl methylphosphonate. A linear response was observed from 60 pptr to 8 ppb for methyl salicylate in air in the negative-ionization mode. Cluster ion formation versus production of analyte ions was investigated and it was found that dry air or an elevated capillary interface temperature (130 degrees C) was needed to avoid extensive clustering, mostly of water. Reagent gases are not needed as proton sources, as is usually the case for atmospheric pressure chemical ionization, and this, together with the simplicity, sensitivity and speed of the technique, makes it promising for miniaturization and future field studies.  相似文献   

17.
Extractive electrospray ionization source(EESI)was adapted for ion-ion reaction,which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.  相似文献   

18.
A heated capillary tube combined with a radio-frequency-only quadrupole has been coupled with a home- made, high-resolution orthogonal-injection, time-of-flight mass spectrometer to improve ion transmission from the atmospheric pressure to the low--pressure regions. With an electrospray ion source, the performance of the interface on the intensity of spectra was investigated. For electrospray ionization, the ion intensity detected on the time-of- flight mass spectrometer was seen to increase three-fold compared with an orifice interface. It has been shown that the enhanced ion inlet designs can not only increase the ion translation efficiency, but also improve the detection limits of the mass spectrometer. Coupling atmospheric pressure matrix-assisted laser desorption/ionization with the improved interface resulted in an instrument detection limit as low as 2.5 fmol.  相似文献   

19.
徐福兴  王亮  罗婵  丁传凡 《分析化学》2011,(10):1501-1505
本研究设计了一种新型用于二次离子质谱的一次离子源及其离子光学系统.通过此一次离子源,大气压下产生的一次离子可以被加速、聚焦并传输到位于真空条件下的样品表面并电离样品得到可供质谱仪分析的二次离子.通过理论模拟结合实验系统研究了此一次离子源的主要组成部分——离子光学系统的原理、结构和性能.以电喷雾电离源为例,成功地将大气压...  相似文献   

20.
Electrospray ionization (ESI) is the most common ionization method in atmospheric pressure ionization mass spectrometry because of its easy use and handling and because a diverse range of components can be effectively ionized from high to medium polarity. Usually, ESI is not employed for the analysis of non‐polar hydrocarbons, but under some circumstances, they are effectively ionized. Polyaromatic hydrocarbons and aromatic heterocycles can form radical ions and protonated molecules after ESI, which were detected by Fourier transform ion cyclotron resonance mass spectrometry. The highly condensed aromatic structures are obtained from a heavy crude oil, and the results show class distribution from pure hydrocarbons up to more non‐basic nitrogen‐containing species. By using different solvent compositions [toluene/methanol (50/50 v/v), dichloromethane/methanol (50/50 v/v), dichloromethane/acetonitrile (50/50 v/v) and chloroform], the results show that the lack of proton donor agent helps to preserve the radical formation that was created at the metal/solution interface inside the electrospray capillary. The results demonstrate that with an appropriate selection of solvent and capillary voltage, the ratio between the detected radical ion and protonated molecule form can be manipulated. Therefore, ESI can be expanded for the investigation of asphaltene and other polyaromatic systems beyond the polar constituents as non‐polar hydrocarbons can be efficiently analyzed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号