首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Comprehensive analysis of high‐resolution mass spectra of aged natural dammar resin obtained with Fourier transform ion cyclotron resonance mass spectrometer (FT‐ICR‐MS) using matrix‐assisted laser desorption/ionization (MALDI) and atmospheric pressure chemical ionization (APCI) is presented. Dammar resin is one of the most important components of painting varnishes. Dammar resin is a terpenoid resin (dominated by triterpenoids) with intrinsically very complex composition. This complexity further increases with aging. Ten different solvents and two‐component solvent mixtures were tested for sample preparation. The most suitable solvent mixtures for the MALDI‐FT‐ICR‐MS analysis were dichloromethane‐acetone and dichloromethane‐ethanol. The obtained MALDI‐FTMS mass spectrum contains nine clusters of peaks in the m/z range of 420–2200, and the obtained APCI‐FTMS mass spectrum contains three clusters of peaks in the m/z range of 380–910. The peaks in the clusters correspond to the oxygenated derivatives of terpenoids differing by the number of C15H24 units. The clusters, in turn, are composed of subclusters differing by the number of oxygen atoms in the molecules. Thorough analysis and identification of the components (or groups of components) by their accurate m/z ratios was carried out, and molecular formulas (elemental compositions) of all major peaks in the MALDI‐FTMS and APCI‐FTMS spectra were identified (and groups of possible isomeric compounds were proposed). In the MALDI‐FTMS and APCI‐FTMS mass spectrum, besides the oxidized C30, triterpenoids also peaks corresponding to C29 and C31 derivatives of triterpenoids (demethylated and methylated, correspondingly) were detected. MALDI and APCI are complementary ionization sources for the analysis of natural dammar resin. In the MALDI source, preferably polar (extensively oxidized) components of the resin are ionized (mostly as Na+ adducts), whereas in the APCI source, preferably nonpolar (hydrocarbon and slightly oxidized) compounds are ionized (by protonation). Either of the two ionization methods, when used alone, gives an incomplete picture of the dammar resin composition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
We studied the time‐of‐flight secondary ion mass spectrometry fragmentation mechanisms of polystyrenes—phenyl‐fluorinated polystyrene (5FPS), phenyl‐deuterated polystyrene (5DPS), and hydrogenated polystyrene (PS). From the positive ion spectra of 5FPS, we identified some characteristic molecular ion structures with isomeric geometries such as benzylic, benzocyclobutene, benzocyclopentene, cyclopentane, and tropylium systems. These structures were evaluated by the B3LYP‐D/jun‐cc‐pVDZ computation method. The intensities of the C7H2F5+ (m/z = 181), CyPent‐C9H3F4+ (m/z = 187), CyPent‐C9H4F5+ (m/z = 207), and CyPent‐C9H2F5+ (m/z = 205) ions were enhanced by resonance stabilization. The positive fluorinated ions from 5FPS tended to rearrange and produce fewer fluorine‐containing molecular ions through the loss of F (m/z = 19), CF (m/z = 31), and CF2 (m/z = 50) ion fragments. Consequently, the fluorine‐containing polycyclic aromatic ions had much lower intensities than their hydrocarbon counterparts. We propose the fragmentation mechanisms for the formation of C5H5+, C6H5+, and C7H7+ ion fragments, substantiated with detailed analyses of the negative ion spectra. These ions were created through elimination of a pentafluoro‐phenyl anion (C6F5) and H+, followed by a 1‐electron‐transfer process and then cyclization of the newly generated polyene with carbon‐carbon bond formation. The pendant groups with elements of different electronegativities exerted strong influences on the intensities and fragmentation processes of their corresponding ions.  相似文献   

3.
The gas‐phase reactions of Aryl―SF5·+ and Aryl―SO2F·+ have been studied with the electron ionization tandem mass spectrometry. Such reactions involve F‐atom migration from the S‐atom to the aryl group affording the product ion Aryl―F·+ by subsequent expulsion of SF4 or SO2, respectively. Especially, the 4‐pentafluorosulfanylphenyl cation 4‐SF5C6H4+ (m/z 203) from 4‐NO2C6H4SF5·+ by loss of ·NO2 could occur multiple F‐atom migration reactions to the product ion C6H4F3+ (m/z 133) by loss of SF2 in the MS/MS process. The gas‐phase reactions of 2,5‐xylylfluoroiodonium (pXyl―I+F, m/z 251) have also been studied using the electrospray tandem mass spectrometry, which involve a similar F‐atom migration process from the I‐atom to the aryl group giving the radical cation of 2‐fluoro‐p‐xylene (or its isomer 4‐fluoro‐m‐xylene, m/z 124) by reductive elimination of an iodine atom. All these gas‐phase F‐atom migration reactions from the heteroatom to the aryl group led to the aryl―F coupling product ions with a new formed CAryl―F bond. Density functional theory calculations were performed to shed light on the mechanisms of these reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Heterogenization of tris(pentafluorophenyl)borane [B(C6F5)3] on a silica support stabilized with chlorotriphenylmethane (CICPh3) and N,N‐dimethylaniline (HNMe2Ph) creates the following supported borane cocatalysts: [HNMe2Ph]+[B(C6F5)3‐SiO2]? and [CPh3]+[B(C6F5)3‐SiO2]?. These supported catalysts were reacted with Cp2ZrCl2 TIBA in situ to generate active metallocene species in the reactor. Triisobutylaluminum (TIBA) was a good coactivator for dichloro‐zirconocene, acting as the prealkylating agent to generate cationic zirconocene (Cp2ZrC4H9+). The catalytic performances were determined from the kinetics of ethylene‐consumption profiles that were independent of the time dedicated to the activation of the catalysts. The scanning electron microscopy‐energy dispersive X‐ray measurements showed that B(C6F5)3 dispersed uniformly on the silica support. Under our reaction conditions, the [CPh3]+[B(C6F5)3‐SiO2]? system had higher productivity and weight‐average molecular weight than the [HNMe2Ph]+[B(C6F5)3‐SiO2]? system. For the [CPh3]+[B(C6F5)3‐SiO2]? system, the productivity increased with the amount catalyst; however, the polydispersity index of polyethylene synthesized did not change. The final shape of polymer particles was a larger‐diameter version of the original support particle. The polymer particles synthesized with supported [CPh3]+[B(C6F5)3‐SiO2]? catalysts had larger diameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3240–3248, 2002  相似文献   

5.
A method for rapid identification and quantification of phthalate plasticizers in beverages was developed. A number of 15 phthalate plasticizers which covered all the phthalates concerned in the US Consumer Product Safety Improvement Act (CPSIA), European Union legislations and Chinese national standards (GB) were analyzed. By a combined solid‐phase micro‐extraction (SPME) and direct analysis in real time mass spectrometry (DART‐MS) approach, phthalates at sub‐ng·mL?1 levels can be qualitatively and quantitatively analyzed in a short time. The use of ultrahigh‐resolving power and the accurate mass measurement capacity naturally provided by Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR‐MS) minimizes the matrix interferences and thus enables the evaluation of phthalates in a complex matrix without extensive sample handlings or preparations. The limits of quantification (LOQs) were estimated to be at 0.3–5.0 ng·mL?1, lower than the Maximum Residue Limit (MRL) regulated by the European Union legislations (2007/19/EC) in foods, beverages, food packaging and toys (0.3–30 ng·mL?1). This rapid and easy‐to‐use SPME‐DART‐FT‐ICR‐MS method provided a relatively high‐throughput and powerful analytical approach for quick testing and screening phthalates in beverages and water samples to ensure food safety.  相似文献   

6.
Fluorinated β‐ketonaphthyliminate ligand CF3C(O)CHC[HN(naphthyl)]CH3 ( L1 ) and Pd(II) complexes with dichelate fluorinated β‐ketonaphthyliminato ligand, {CF3C(O)CHC[N(naphthyl)]CH3}2Pd ( C1 ), as well as with monochelate fluorinated β‐ketonaphthyliminato ligand, {CF3C(O)CHC[N(naphthyl)]CH3}Pd(CH3)(PPh3) ( C2 ), were synthesized and their solid‐state structures were confirmed using X‐ray crystallographic analysis. The Pd(II) complexes were employed as precursors to catalyze norbornene (NB) homo‐ and copolymerization with ester‐functionalized NB derivative using B(C6F5)3 as a co‐catalyst. High activity up to 2.3 × 105 gpolymer molPd?1 h?1 for the C1 /B(C6F5)3 system and 3.4 × 106 gpolymer molPd?1 h?1 for the C2 /B(C6F5)3 system was exhibited in NB homopolymerization. Moreover, the Pd(II) complexes exhibited a high level of tolerance towards the ester‐functionalized MB monomer. In comparison with the C1 /B(C6F5)3 system, the C2 /B(C6F5)3 system exhibited better catalytic property towards the copolymerization of NB with 5‐norbornene‐2‐carboxylic acid methyl ester (NB‐COOCH3), and soluble vinyl‐addition‐type copolymers were obtained with relatively high molecular weights (3.6 × 104–7.5 × 104 g mol?1) as well as narrow molecular weight distributions (1.49–2.15) depending on the variation of monomer feed ratios. The NB‐COOCH3 insertion ratio in all copolymers could be controlled in the range 2.8–21.0 mol% by tuning a content of 10–50 mol% NB‐COOCH3 in the monomer feed ratios. Copolymerization kinetics were expressed by the NB and NB‐COOCH3 monomer reactivity ratios: rNB‐COOCH3 = 0.18, rNB = 1.28 were determined for the C1 /B(C6F5)3 system and rNB‐COOCH3 = 0.19, rNB = 3.57 for the C2 /B(C6F5)3 system using the Kelen–Tüdõs method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Porphyrin–AuIII complexes, which were partially or totally modified with C6F5 at the meso positions, were synthesized. The highly electron‐withdrawing substituents induced electron‐deficient states and Lewis acid properties. Single‐crystal X‐ray analysis of the ion pairs revealed ion‐pairing assemblies with characteristics dependent on the number and substitution pattern of the C6F5 units and the geometries of the anions.  相似文献   

8.
The time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) positive and negative ion spectra of poly(2‐vinylpyridine) (P2VP) and poly(4‐vinylpyridine) (P4VP) were analyzed using density functional theory calculations. Most of the ions from these structural isomers shared the same accurate mass, but had different relative abundance. This could be attributed to the fact that from a thermodynamics perspective, the disparity in the molecular structures can affect the ion stability if we assume that they shared the same mechanistic pathway of formation with similar reaction kinetics. The molecular structures of these ions were assigned, and their stability was evaluated based on calculations using the Kohn‐Sham density functional theory with Becke's 3‐parameter Lee‐Yang‐Parr exchange‐correlation functional and a correlation‐consistent, polarized, valence, double‐zeta basis set for cations and the same basis set with a triple‐zeta for anions. The computational results agreed with the experimental observations that the nitrogen‐containing cations such as C5H4N+ (m/z = 78), C8H7N (m/z = 117), C8H8N+ (m/z = 118), C9H8N+ (m/z = 130), C13H11N2+ (m/z = 195), C14H13N2+ (m/z = 209), C15H15N2+ (m/z = 223), and C21H22N3+ (m/z = 316) ions were more favorably formed in P2VP than in P4VP due to higher ion stability because the calculated total energies of these cations were more negative when the nitrogen was situated at the ortho position. Nevertheless, our assumption was invalid in the formation of positive ions such as C6H7N+˙ (m/z = 93) and C8H10N+ (m/z = 120). Their formation did not necessarily depend on the ion stability. Instead, the transition state chemistry and the matrix effect both played a role. In the negative ion spectra, we found that nitrogen‐containing anions such as C5H4N? (m/z = 78), C6H6N? (m/z = 92), C7H6N? (m/z = 104), C8H6N? (m/z = 116), C9H10N? (m/z = 132), C13H11N2? (m/z = 195), and C14H13N2? (m/z = 209) ions were more favorably formed in P4VP, which is in line with our computational results without exception. We speculate that whether anions would form from P2VP and P4VP is more dependent on the stability of the ions.  相似文献   

9.
We have studied the dissociation of the trifluoromethane molecule, CHF3, into negative ionic fragments at the C 1s and F 1s edges. The measurements were performed by detecting coincidences between negative and positive ions. We observed five different negative ions: F?, H?, C?, CF?, and F2?. Their production was confirmed by the analysis of triple coincidence events (negative‐ion/positive‐ion/positive‐ion or NIPIPI coincidences) that were recorded with cleaner signals than those of the negative‐ion/positive‐ion coincidences. The intensities of the most intense NIPIPI coincidence channels were recorded as a function of photon energy across the C 1s and F 1s excitations and ionization thresholds. We also observed dissociation channels involving the formation of one negative ion and three positive ions. Our results demonstrate that negative‐ion/positive‐ion coincidence spectroscopy is a very sensitive method to observe anions, which at inner‐shell edges are up to three orders of magnitude less probable dissociation products than cations.  相似文献   

10.
The reagent Me3Si(C6F5) was used for the preparation of a series of perfluorinated, pentafluorophenyl‐substituted 3,6‐dihydro‐2H‐1,4‐oxazines ( 2 – 8 ), which, otherwise, would be very difficult to synthesize. Multiple pentafluorophenylation occurred not only on the heterocyclic ring of the starting compound 1 (Scheme), but also in para position of the introduced C6F5 substituent(s) leading to compounds with one to three nonafluorobiphenyl (C12F9) substituents. While the tris(pentafluorophenyl)‐substituted compound 3 could be isolated as the sole product by stoichiometric control of the reagent, the higher‐substituted compounds 5 – 8 could only be obtained as mixtures. The structures of the oligo(perfluoroaryl) compounds were confirmed by 19F‐ and 13C‐NMR, MS, and/or X‐ray crystallography. DFT simulations of the 19F‐ and 13C‐NMR chemical shifts were performed at the B3LYP‐GIAO/6‐31++G(d,p) level for geometries optimized by the B3LYP/6‐31G(d) level, a technique that proved to be very useful to accomplish full NMR assignment of these complex products.  相似文献   

11.
Gas‐phase reactions of CO3.? with formic acid are studied using Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2, which in turn transfer the electron to O3. O3.? reacts with CO2 to form CO3.?. The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.  相似文献   

12.
The gas‐phase reaction of monomethylhydrazine (CH3NH? NH2; MMH) with ozone was investigated in a flow tube at atmospheric pressure and a temperature of 295 ± 2 K using N2/O2 mixtures (3–30 vol% O2) as the carrier gas. Proton transfer reaction–mass spectrometry (PTR‐MS) and long‐path FT‐IR spectroscopy served as the main analytical techniques. The kinetics of the title reaction was investigated with a relative rate technique yielding kMMH+O3 = (4.3 ± 1.0) × 10?15 cm3 molecule?1 s?1. Methyldiazene (CH3N?NH; MeDia) has been identified as the main product in this reaction system as a result of PTR‐MS analysis. The reactivity of MeDia toward ozone was estimated relative to the reaction of MMH with ozone resulting in kMeDia+O3 = (2.7 ± 1.6) × 10?15 cm3 molecule?1 s?1. OH radicals were followed indirectly by phenol formation from the reaction of OH radicals with benzene. Increasing OH radical yields with increasing MMH conversion have been observed pointing to the importance of secondary processes for OH radical generation. Generally, the detected OH radical yields were definitely smaller than thought so far. The results of this study do not support the mechanism of OH radical formation from the reaction of MMH with ozone as proposed in the literature.  相似文献   

13.
Kinetically stabilized congeners of carbenes, R2C, possessing six valence electrons (four bonding electrons and two non‐bonding electrons) have been restricted to Group 14 elements, R2E (E=Si, Ge, Sn, Pb; R=alkyl or aryl) whereas isoelectronic Group 15 cations, divalent species of type [R2E]+ (E=P, As, Sb, Bi; R=alkyl or aryl), were unknown. Herein, we report the first two examples, namely the bismuthenium ion [(2,6‐Mes2C6H3)2Bi][BArF4] ( 1 ; Mes=2,4,6‐Me3C6H2, ArF=3,5‐(CF3)2C6H3) and the stibenium ion [(2,6‐Mes2C6H3)2Sb][B(C6F5)4] ( 2 ), which were obtained by using a combination of bulky meta‐terphenyl substituents and weakly coordinating anions.  相似文献   

14.
New [(N?,N,N?)ZrR2] dialkyl complexes (N?,N,N?=pyrrolyl‐pyridyl‐amido or indolyl‐pyridyl‐amido; R=Me or CH2Ph) have been synthesised and tested as pre‐catalysts for ethene and propene polymerisation in combination with different activators, such as B(C6F5)3, [Ph3C][B(C6F5)4], [HNMe2Ph][B(C6F5)4] or solid AlMe3‐depleted methylaluminoxane (DMAO). Polyethylene (Mw>2 MDa and Mw/Mn = 1.3–1.6) has been produced if pre‐catalysts were activated with 1000 equivalents of DMAO (based on Al) [activity >1000 kgPE (mol[Zr] h mol atm)?1] or by using a higher pre‐catalyst concentration and a mixture of [HNPhMe2][B(C6F5)4] (1 equiv) and AliBu2H (60 equiv). In the case of propene polymerisation, activity has been observed only if pre‐catalysts were treated with an excess of AliBu2H prior to addition of DMAO, which led to highly isotactic polypropylene ([mmmm]>95 %). Neutral pre‐catalysts and ion pairs derived from their activation have been characterised in solution by using advanced 1D and 2D NMR spectroscopy experiments. The detection and rationalisation of intercationic NOEs clearly showed the formation of dimeric species in which some pyrrolyl or indolyl π‐electron density of one unit is engaged in stabilising the metal centre of the other unit, which relegates the counterions in the second coordination sphere. The solid‐state structure of the dimeric indolyl‐pyridyl‐amidomethylzirconium derivative, determined by X‐ray diffraction studies, points toward a weak Zr???η3‐indolyl interaction. It can be hypothesised that the formation of dimeric cationic species hampers monomer coordination (especially of less reactive α‐olefins) and that addition of AliBu2H is crucial to split the homodimers.  相似文献   

15.
The kinetics of the C2H5 + Cl2, n‐C3H7 + Cl2, and n‐C4H9 + Cl2 reactions has been studied at temperatures between 190 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time‐resolved measurements to obtain reaction rate coefficients under pseudo‐first‐order conditions. The bimolecular rate coefficients of all three reactions are independent of the helium bath gas pressure within the experimental range (0.5–5 Torr) and are found to depend on the temperature as follows (ranges are given in parenthesis): k(C2H5 + Cl2) = (1.45 ± 0.04) × 10?11 (T/300 K)?1.73 ± 0.09 cm3 molecule?1 s?1 (190–359 K), k(n‐C3H7 + Cl2) = (1.88 ± 0.06) × 10?11 (T/300 K)?1.57 ± 0.14 cm3 molecule?1 s?1 (204–363 K), and k(n‐C4H9 + Cl2) = (2.21 ± 0.07) × 10?11 (T/300 K)?2.38 ± 0.14 cm3 molecule?1 s?1 (202–359 K), with the uncertainties given as one‐standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±20%. Current results are generally in good agreement with previous experiments. However, one former measurement for the bimolecular rate coefficient of C2H5 + Cl2 reaction, derived at 298 K using the very low pressure reactor method, is significantly lower than obtained in this work and in previous determinations. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 614–619, 2007  相似文献   

16.
We describe herein an original approach for the efficient immortal ring‐opening polymerization (iROP) of trimethylene carbonate (TMC) under mild conditions using dual‐catalyst systems combining a discrete cationic metal complex with a tertiary amine. A series of new zinc and magnesium cationic complexes of the type [{NNO}M]+[anion]? ({NNO}?=2,4‐di‐tert‐butyl‐6‐{[(2′‐dimethylaminoethyl)methylamino]methyl}phenolate; M=Zn, [anion]?=[B(C6F5)4]? ( 2 ), [H2N‐ {B(C6F5)3}2]? ( 3 ), and [EtB(C6F5)3]? ( 4 ); M=Mg, [anion]?=[H2N{B(C6F5)3}2]? ( 7 )) have been prepared from the corresponding neutral compounds [{NNO}ZnEt] ( 1 ) and [{NNO}‐ Mg(nBu)] ( 6 ). Compounds 2 – 4 and 7 exist as free ion pairs, as revealed by 1H, 13C, 19F, and 11B NMR spectroscopy in THF solution, and an X‐ray crystallographic analysis of the bis(THF) adduct of compound 7 , 7? (THF)2. The neutral complexes 1 and 6 , in combination with one equivalent or an excess of benzyl alcohol (BnOH), initiate the rapid iROP of TMC, in bulk or in toluene solution, at 45–60 °C (turnover frequency, TOF, up to 25–30 000 mol(TMC)?mol(Zn)?h?1 for 1 and 220–240 000 mol(TMC)?mol(Mg)?h?1 for 6 ), to afford H‐PTMC‐OBn with controlled macromolecular features. ROP reactions mediated by the cationic systems 2 /BnOH and 7 /BnOH proceeded much more slowly (TOF up to 500 and 3 000 mol(TMC)?mol(Zn or Mg)?h?1 at 110 °C) than those based on the parent neutral compounds 1 /BnOH and 6 /BnOH, respectively. Use of original dual organic/organometallic catalyst systems, obtained by adding 0.2–5 equiv of a tertiary amine such as NEt3 to zinc cationic complexes [{NNO}Zn]+[anion]? ( 2 – 4 ), promoted high activities (TOF up to 18 300 mol(TMC)?mol(Zn)?h?1 at 45 °C) giving H‐PTMC‐OBn with good control over the Mn and Mw/Mn values. Variation of the nature of the anion in 2 – 4 did not significantly affect the performance of these catalyst systems. On the other hand, the dual magnesium‐based catalyst system 7 /NEt3 proved to be poorly effective.  相似文献   

17.
An extensive study by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry (MS) of some first‐generation and second‐generation lanthanide(III)‐cored poly(phenylenevinylene) dendrimers is described. The complexes were obtained by self‐assembly of suitably functionalized carboxylate dendrons around the lanthanide ion (La3+, Er3+). Fourier transform infrared (FT‐IR) spectroscopy gave reasonable evidence for the proposed structures. However, MS was used to ascertain unequivocally the complex formation. The most reliable results were found in the negative reflector mode, using 2‐[(2E)‐3‐(4‐tert‐butylphenyl)‐2‐methylprop‐2‐enylidene]malononitrile (DCTB) as matrix. Well‐defined and highly resolved base peaks corresponding to negative ions of [Gn4La]? and [Gn4Er]? were found in all cases, with an excellent match between the theoretical and observed isotope distributions. However, the 3 : 1 stoichiometry used in the synthesis guarantees an empirical formula Gn3Ln for the complexes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Classical organic anode materials for Na‐ion batteries are mostly based on conjugated carboxylate compounds, which can stabilize added electrons by the double‐bond reformation mechanism. Now, 1,4‐cyclohexanedicarboxylic acid (C8H12O4, CHDA) with a non‐conjugated ring (?C6H10?) connected with carboxylates is shown to undergo electrochemical reactions with two Na ions, delivering a high charge specific capacity of 284 mA h g?1 (249 mA h g?1 after 100 cycles), and good rate performance. First‐principles calculations indicate that hydrogen‐transfer‐mediated orbital conversion from antibonding π* to bonding σ stabilize two added electrons, and reactive intermediate with unpaired electron is suppressed by localization of σ‐bonds and steric hindrance. An advantage of CHDA as an anode material is good reversibility and relatively constant voltage. A large variety of organic non‐conjugated compounds are predicted to be promising anode materials for sodium‐ion batteries.  相似文献   

19.
The mass spectrometric (MS) analysis of flavone di‐C‐glycosides has been a difficult task due to pure standards being unavailable commercially and to that the reported relative intensities of some diagnostic ions varied with MS instruments. In this study, five flavone di‐C‐glycoside standards from Viola yedoensis have been systematically studied by high performance liquid chromatography‐electrospray ionization‐tandem ion trap mass spectrometry (HPLC‐ESI‐IT‐MSn) in the negative ion mode to analyze their fragmentation patterns. A new MS2 and MS3 hierarchical fragmentation for the identification of the sugar nature (hexoses or pentoses) at C‐6 and C‐8 is presented based on previously established rules of fragmentation. Here, for the first time, we report that the MS2 and MS3 structure‐diagnostic fragments about the glycosylation types and positions are highly dependent on the configuration of the sugars at C‐6 and C‐8. The base peak (0,2X10,2X2? ion) in MS3 spectra of di‐C‐glycosides could be used as a diagnostic ion for flavone aglycones. These newly proposed fragmentation behaviors have been successfully applied to the characterization of flavone di‐C‐glycosides found in V. yedoensis. A total of 35 flavonoid glycosides, including 1 flavone mono‐C‐hexoside, 2 flavone 6,8‐di‐C‐hexosides, 11 flavone 6,8‐di‐C‐pentosides, 13 flavone 6,8‐C‐hexosyl‐C‐pentosides, 5 acetylated flavone C‐glycosides and 3 flavonol O‐glycosides, were identified or tentatively identified on the base of their UV profiles, MS and MSn (n = 5) data, or by comparing with reference substances. Among these, the acetylated flavone C‐glycosides were reported from V. yedoensis for the first time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The kinetics of the gas‐phase reactions of O3 with a series of selected terpenes has been investigated under flow‐tube conditions at a pressure of 100 mbar synthetic air at 295 ± 0.5 K. In the presence of a large excess of m‐xylene as an OH radical scavenger, rate coefficients k(O3+terpene) were obtained with a relative rate technique, (unit: cm3 molecule?1 s?1, errors represent 2σ): α‐pinene: (1.1 ± 0.2) × 10?16, 3Δ‐carene: (5.9 ± 1.0) × 10?17, limonene: (2.5 ± 0.3) × 10?16, myrcene: (4.8 ± 0.6) × 10?16, trans‐ocimene: (5.5 ± 0.8) × 10?16, terpinolene: (1.6 ± 0.4) × 10?15 and α‐terpinene: (1.5 ± 0.4) × 10?14. Absolute rate coefficients for the reaction of O3 with the used reference substances (2‐methyl‐2‐butene and 2,3‐dimethyl‐2‐butene) were measured in a stopped‐flow system at a pressure of 500 mbar synthetic air at 295 ± 2 K using FT‐IR spectroscopy, (unit: cm3 molecule?1 s?1, errors represent 2σ ): 2‐methyl‐2‐butene: (4.1 ± 0.5) × 10?16 and 2,3‐dimethyl‐2‐butene: (1.0 ± 0.2) × 10?15. In addition, OH radical yields were found to be 0.47 ± 0.04 for 2‐methyl‐2‐butene and 0.77 ± 0.04 for 2,3‐dimethyl‐2‐butene. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 394–403, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号