首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a novel millifluidic droplet analyser (MDA) for precisely monitoring the dynamics of microbial populations over multiple generations in numerous (≥10(3)) aqueous emulsion droplets (~100 nL). As a first application, we measure the growth rate of a bacterial strain and determine the minimal inhibitory concentration (MIC) for the antibiotic cefotaxime by incubating bacteria in a fine gradient of antibiotic concentrations. The detection of cell activity is based on the automated detection of an epifluorescent signal that allows the monitoring of microbial populations up to a size of ~10(6) cells. We believe that this device is helpful for the study of population dynamic consequences of microbe-environment interactions and of individual cell differences. Moreover, the fluidic machine may improve clinical tests, as it simplifies, automates and miniaturizes the screening of numerous microbial populations that grow and evolve in compartments with a finely tuned composition.  相似文献   

2.
A challenging method for sterility test which was rapid and reliable had been established to assess the adaptability and robustness of the microbial under different conditions. There were material and energy metabolism or exchange with microbial on microcalorimetry, as a result this method can be served as one of the optimization of thermodynamics sterility test. Thermal power-time curves under various environmental conditions (including processing temperature, storage time, and drugs inhibition) were determined. Typical microbial growth thermal power-time curves were obtained. The curves were analyzed qualitatively and quantitatively by similarity values of bio-profiles and thermodynamics parameters, such as the exponential growth rate constant (k), detection time (T d). The similarity showed that microbial growth curves of low processing temperature, short storage time (1?month), and Traditional Chinese Medicine injection (Shuanghuanglian, contained native compounds) inhibiting were match better with the normal than other circumstance. Thermodynamic parameters indicated that the microcalorimetric method could detect the positive bacteria within 18?h (less than 10?cfu), and more quickly identify the different states of the bacterium growth and metabolism than routine sterility. In conclusion, characterized by of the specific and strong two-dimensional information, microcalorimetry could supply thermograms as biological profiles to describe the microbial activity under different conditions, which were not only used as a rapid and reliable identification of microbial, but also as a method for sterility test of microcalorimetry optimization.  相似文献   

3.
Abstract

The effect of liquid animal manure on heavy metal solubilization in soil has been studied in the laboratory; three different types of experiments were carried out:

1) aerobic and anaerobic incubation of soil/manure mixtures

2) desorption of heavy metals from soil, as affected by manure liquid fraction

3) gel permeation chromatography of soil/manure aqueous extracts to identify components responsible for heavy metal solubilization.

Alf three different approaches showed that complexation involving high molecular weight dissolved organic matter from the soil/manure matrix is (together with pH) the most important driving force for heavy metal solubilization. As a consequence, chemical and microbial processes (e.g. nitrification) that influence dissolved organic matter concentrations in the soil solution, determine the degree of heavy metal solubilization in manured soil.  相似文献   

4.
In Saudi Arabia, more than 335,000 tons of cow manure is produced every year from dairy farming. However, the produced cow manure is usually added to the agricultural soils as raw or composted manure; significant nitrogen losses occur during the storage, handling, and application of the raw manure. The recovery of ammonia from cow manure through thermochemical treatments is a promising technique to obtain concentrated nitrogen fertilizer and reducing nitrogen losses from raw manure. However, the byproduct effluents from the recovery process are characterized by different chemical properties from the original raw manure; thus, its impact as soil amendments on the soil carbon and nitrogen dynamics is unknown. Therefore, a 90-day incubation experiment was conducted to study the impact of these effluents on CO2 efflux, organic C, microbial biomass C, available NH4+, and NO3 when added to agricultural soil. In addition to the two types of effluents (produced at pH 9 and pH 12), raw cow manure (CM), composted cow manure (CMC), cow manure biochar (CMB), and control were used for comparison. The application of CM resulted in a considerable increase in soil available nitrogen and CO2 efflux, compared to other treatments. Cow manure biochar showed the lowest CO2 efflux. Cumulative CO2 effluxes of cow manure effluents were lower than CM; this is possibly due to the relatively high C:N ratio of manure effluent. The content of P, Fe, Cu, Zn, and Mn decreased as incubation time increased. Soil microbial biomass C for soil treated with cow manure effluents (pH 12 and 7) was significantly higher than the rest of the soil amendments and control.  相似文献   

5.
We have developed a substrate-induced growth response (SIGR) method for quantifying activity and population dynamics of microorganisms involved in bioremediation processes in soil and bioreactors. The biomass of organisms that can mineralize a given chemical can be estimated based on the concentration of that chemical needed to induce the growth of the standing population. Estimates of population size are obtained by using nonlinear regression techniques to fit a simple model of microbial population dynamics to biodegradation curves. Using this approach we obtain estimates of values for parameters such as initial population size and growth rate of organisms carrying out biodegradative processes. Our approach was validated by comparing model parameter estimates with independent estimates of the same parameters from the same bioremediation systems. Examples studied include pentachlorophenol degraders introduced into soil and 2,4-dinitrophenol degrading organisms in a bioreactor.  相似文献   

6.
This study focused on the effect of hemicellulose and lignin on enzymatic hydrolysis of dairy manure and hydrolysis process optimization to improve sugar yield. It was found that hemicellulose and lignin in dairy manure, similar to their role in other lignocellulosic material, were major resistive factors to enzymatic hydrolysis and that the removal of either of them, or for best performance, both of them, improved the enzymatic hydrolysis of manure cellulose. This result combined with scanning electron microscope (SEM) pictures further proved that the accessibility of cellulose to cellulase was the most important feature to the hydrolysis. Quantitatively, fed-batch enzymatic hydrolysis of fiber without lignin and hemicellulose had a high glucose yield of 52% with respect to the glucose concentration of 17 g/L at a total enzyme loading of 1300 FPU/L and reaction time of 160 h, which was better than corresponding batch enzymatic hydrolysis.  相似文献   

7.
A kinetic model for single-cell protein batch fermentation was developed using the numerical simultaneous integration approach of the fourth-order Runge-Kutta method. The model takes into account the effect of substrate inhibtion, maintenance energy, and cell death on the cell growth and substrate utilization during the fermentation process. The theoretical results obtained from the model compared well with the experimental data. The model was used to study the effect of the initial substrate concentration on the lag period, fermentation time, specific growth rate, population size, and cell productivity of batch fermentation. Increasing the initial substrate concentration increased the lag period and fermentation time and decreased the specific growth rate and cell yield. The growth limiting substrate concentration was 2.9 g/L, whereas the growth inhibiting substrate concentration was 69.0 g/L. Increasing the initial substrate concentration above 150 g/L significantly decreased the yeast population size.  相似文献   

8.
Zn是典型的人类活动源元素之一,工业化进程加剧了Zn对农田生态系统污染的威胁犤1犦。最初,重金属是否污染判断标准采用X+2S(X为该元素背景值,S为标准偏差)犤2犦,国际通用土壤质量标准界定之后,将生物量下降60%作为重金属元素的临界浓度犤3犦。一些研究表明,Cu、Pb、Cd、Hg等进入土壤之后,微生物群落多样性发生改变犤4犦,导致微生物生物量和呼吸速率降低或显著增加犤5犦,酶的活性受严重损害犤6犦,微生物生态参数Cmic/Corg降低,代谢熵qCO2则明显升高犤7犦。对Zn2+的研究侧重于生物毒理作用犤8犦,Zn2+…  相似文献   

9.
Modifications in the surface charge and hydrophobicity of Staphylococcus aureus Oxford during growth were studied by analysing electrophoretic mobility and adherence to hydrocarbons (hexadecane), respectively. Bacterial concentration had no effect upon the measurements. Both surface charge and hydrophobicity varied during the exponential phase of growth (1 to 4 h): surface charge decreased significantly (p < 0.001), while hydrophobicity increased (p < 0.001). In the stationary phase (4 to 9 h), the surface charge increased significantly (p < 0.001), whereas hydrophobicity showed no change. Cationized ferritin decreased the surface charge and had no effect on hydrophobicity. These results suggest that in S. aureus, different structures could be responsible for their surface charge and hydrophobic properties.  相似文献   

10.
It is known that the breakup times for thin liquid films on solid surfaces can be substantially smaller if the surface is heterogeneous, either chemically or physically. In this paper we explore issues related to the effect of the shape of the physical and chemical heterogeneities on the breakup time and the thinning behavior. We consider two shapes, sinusoidal and exponential, for both physical and chemical gradients and compare the breakup times for these two different forms of gradients. Furthermore, the wavelength of the sinusoidal gradients and the length scale of the exponential gradients are varied and the effects of these on the breakup times and the film evolution are determined. For the sinusoidal gradients, we also obtain analytical results for shape evolution that are valid at short times and for small amplitude perturbation of the physical/chemical heterogeneities. The fastest growing modes are determined for spinodal breakup and also for both shapes (sinusoidal and exponential) of physical and chemical heterogeneities. The breakup times for the fastest growing modes from the linear and the nonlinear studies are compared for spinodal breakup and these results are also compared with those for both chemical and physical heterogeneities, of both sinusoidal and exponential shapes. Results show that the presence of heterogeneities, in general, accelerates the breakup of the film. In the linear regime, the growth rates are the same for the chemical and physical heterogeneities and spinodal breakup, and the effect of the heterogeneities is manifested as increased amplitude of initial perturbation. The effect of the chemical and physical heterogeneities dominate the film dynamics at early times, becoming less important at later times. The growth rates and equivalently the breakup times for the films on heterogeneous surfaces depend on the length scale over which physical/chemical gradients occur, and as the length scale approaches zero, which implies that the gradients become very steep, the effect of the heterogeneities on the breakup times becomes small.  相似文献   

11.
High-throughput experimentation in heterogeneous catalysis has recently experienced nearly exponential growth. Initial qualitative screening has evolved into quantitative high-throughput experimentation, characterization, and analysis. This allows high-throughput catalysis now to rise above simple screening to the level of fundamental understanding of reaction mechanisms, which will lead on a faster path to the Holy Grail of catalysis: rational catalyst design.  相似文献   

12.
微生物燃料电池影响因素及作用机理探讨   总被引:5,自引:0,他引:5  
以生活污水为初始接种体, 以醋酸钠水溶液为原料, 构建了一个无媒介体、无膜的单室微生物燃料电池, 考察了溶液的浓度、外电阻、温度和氧气的加入等因素对电池性能的影响, 监测了电池外电压和两极电极电势的变化过程, 分析了微生物燃料电池的运行机理. 研究结果表明: (1) 阳极吸附的微生物的活性是影响电池输出电压(输出功率)的关键因素. 营养液初始浓度越高, 微生物活性越高, 输出最大电压越高, 输出电压与浓度之间的关系符合MONOD方程; 溶液中溶氧的存在使微生物活性明显降低, 但溶氧浓度降低到一定程度后, 活性逐步恢复; 随着电池温度的升高, 微生物活性快速上升, 但温度突变到50 ℃后, 微生物活性明显降低; (2) 电池换水后, 由微生物活性所决定的阳极电势迅速达到平衡, 而阴极电势需要较长的时间才能达到极大值; (3) 随电流密度的变化, 两极电极电势相应发生变化, 其变化趋势符合原电池的基本规律; (4) 随外电阻的变化, 电池输出功率出现极大值, 即当外电阻为200 Ω时, 电池输出功率达到346 mW/m2.  相似文献   

13.
李玖龄  孙凯  孟佳  沈吉敏  齐虹  江雷 《分析化学》2016,(8):1165-1170
为揭示处理低碳氮比废水的微氧活性污泥系统的生物脱氮机制,了解脱氮功能菌群的群体生长和代谢规律,建立了超高效液相色谱-串联质谱同时定量检测介导革兰氏阴性(G-)细菌群体感应信号分子酰基高丝氨酸内酯( AHLs)的方法。取自升流式微氧活性污泥反应器的泥水混合物,使用乙酸乙酯液液萃取,旋转蒸干后以甲醇定容,经C18色谱柱分离。以5 mmol/L乙酸铵(含0.1%甲酸)和甲醇为流动相进行梯度洗脱,采用多反应离子监测模式,使用配有电喷雾离子源的三重四极杆质谱进行检测。对9种AHLs的检测结果表明,在0.5~100μg/L范围内呈现良好的线性关系,检出限为0.01~0.5μg/L,回收率为62.5%~118.1%,相对标准偏差为2.9%~12.1%,分析时间为6.5 min。本方法具有快速、准确和精密等特点,可及时反映活性污泥功能菌群的生长状态和代谢活性,对了解生物脱氮系统的生物学机制和废水生物处理系统的运行调控具有重要意义。  相似文献   

14.
15.
Table eggs are an affordable yet nutritious protein source for humans. Unfortunately, eggs are a vector for bacteria that could cause foodborne illness. This study aimed to investigate the effectiveness of a quaternary ammonium compound (quat) sanitizer against aerobic mesophilic bacteria, yeast, and mold load on the eggshell surface of free-range and commercial farms and the post-treatment effect on microbial load during storage. Total aerobic mesophilic bacteria, yeast, and molds were enumerated using plate count techniques. The efficacy of the quaternary ammonium sanitizer (quat) was tested using two levels: full factorial with two replicates for corner points, factor A (maximum: 200 ppm, minimum: 100 ppm) and factor B (maximum: 15 min, minimum: 5 min). Quat sanitizer significantly (p < 0.05) reduced approximately 4 log10 CFU/cm2 of the aerobic mesophilic bacteria, 1.5 to 2.5 log10 CFU/cm2 of the mold population, and 1.5 to 2 log10 CFU/cm2 of the yeast population. However, there was no significant (p ≥ 0.05) response observed between individual factor levels (maximum and minimum), and two-way interaction terms were also not statistically significant (p ≥ 0.05). A low (<1 log10 CFU/cm2) aerobic mesophilic bacteria trend was observed when shell eggs were stored in a cold environment up to the production expiry date. No internal microbial load was observed; thus, it was postulated that washing with quat sanitizer discreetly (without physically damaging the eggshell) does not facilitate microbial penetration during storage at either room temperature or cold storage. Current study findings demonstrated that the quat sanitizer effectively reduced the microbial population on eggshells without promoting internal microbial growth.  相似文献   

16.
A series of Mg:In:Fe:LiNbO3 crystals were grown by Czochralski technique; their absorption spectra and photo scattering resistance ability after oxidation or reduction treatment were measured by light spot distortion method, and their response time and exponential gain coefficient were tested by two-beam coupling experiment. Besides, the effective carrier concentration has been calculated. The results showed that the absorption edges of reduced and oxidized crystals are respectively shifted to violet and Einstein compared with those of the growth state crystal. From oxidation state to growth state to reduction state of the samples, the photo scattering resistance ability and response time decrease while the exponential gain coefficient and concentration of effective carriers increase. The reduction treatment was necessary for the Mg:In:Fe:LiNbO3 crystals to enhance their photorefractive properties.  相似文献   

17.
Biodegradation and hydrolysis rate of aliphatic aromatic polyester   总被引:2,自引:0,他引:2  
The biodegradation and hydrolysis rates of an aliphatic aromatic copolyester were measured in manure, food, and yard compost environments and in phosphate buffer solution (pH = 8.0) and vermiculite at 58 °C. Mineralization, molecular weight reduction, and structural changes determined by DSC, FTIR, and 1H NMR were used as indicators of the biodegradation and hydrolysis rates. Poly(butylene adipate-co-terephthalate), PBAT, film biodegraded at distinctive rates in manure, food, and yard compost environments having different microbial activities. The highest biodegradation rate was found in manure compost, which had the highest CO2 emissions and lowest C/N ratio. The possible presence of extracellular enzymes in manure and food composts may facilitate the hydrolytic reaction since greater molecular weight reduction rates were observed in these composts. 1H NMR and thermal analysis revealed that, while PBAT is a semi-crystalline copolyester with cocrystallization of BT and BA dimers, the soft aliphatic domain (BA) and the amorphous region are more susceptible to hydrolysis and biodegradation than the rigid aromatic domain (BT) and the crystalline region.  相似文献   

18.
生长调节剂对甾体微生物催化转化过程的影响   总被引:3,自引:0,他引:3  
阳葵  张鎏 《分子催化》1999,13(2):137-139
利用微生物菌种(如绿僵菌Metarhiziumsp)产生的11α-羟化酶,催化甾体底物16α,17α-环氧黄体酮(16α,17α-epoxy-4-pregnene-3,20-dione)羟化转化为产物11α-羟基-16α,17α-环氧黄体酮,是当前甾...  相似文献   

19.
The turbidity of a microbial suspension sample is routinely determined by measuring the optical density (often referred to as the “absorbance”). This method requires a dilution step at moderate and high cell densities in order to ensure that measurements fall within the region where biomass concentration is linearly correlated to optical density. The measurement of backscattered light (often referred to as the “reflectance”), which has so far been mainly applied to large-scale stirred tanks, should also be applicable on the microscale. To evaluate the validity of this assumption, a standard fluorescence microplate reader was adapted to measure backscattered light. Backscattered light readings from undiluted microbial fermentation samples determined using this modified reader gave similar growth curves to optical density measurements from diluted samples determined in a standard cell photometer. Indeed, the fact that the dilution procedure is not necessary for backscattered light measurements gives them an important advantage over optical density measurements. Such an apparatus is not only suitable for manual operation, but also shows the potential for integration into fully automated robotic systems used for high-throughput experimentation.  相似文献   

20.
The shortage of plant-available nutrients probably constrained prehistoric cereal cropping but there is very little direct evidence relating to the history of ancient manuring. It has been shown that the long-term addition of animal manure elevates the δ(15)N value of soil and of modern crops grown on the soil. We have examined the δ(15)N and δ(13)C values of soil and of the grain and straw fractions of three ancient cereal types grown in unmanured, PK amended and cattle manured plots of the Askov long-term field experiment. Manure increased biomass yields and the δ(15)N values of soil and of grain and straw fractions of the ancient cereal types; differences in δ(15)N between unmanured and PK treatments were insignificant. The offset in straw and grain δ(15)N due to manure averaged 7.9 and 8.8 ‰, respectively, while the soil offset was 1.9 ‰. The soil and biomass δ(13)C values were not affected by nutrient amendments. Grain weights differed among cereal types but increased in the order: unmanured, PK, and animal manure. The grain and straw total-N concentration was generally not affected by manure addition. Our study suggests that long-term application of manure to permanently cultivated sites would have provided a substantial positive effect on cereals grown in early agriculture and will have left a significant N isotopic imprint on soil, grains and straw. We suggest that the use of animal manure can be identified by the (15)N abundance in remains of ancient cereals (e.g. charred grains) from archaeological sites and by growing test plants on freshly exposed palaeosols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号