首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
InxGa1−xAs/GaAs (x = 0.12-0.23) quantum well (QW) structures were grown by molecular beam epitaxy (MBE) on [001] ridges with various widths (1.1-12 μm) of patterned GaAs (100) substrate. The smallest lateral width of the InGaAs/GaAs quantum wire (QWR) structures was estimated to be about 0.1 μm by high-resolution scanning electron microscope (SEM). The In contents of the grown InGaAs/GaAs QWs on the ridges were studied as a function of ridge top width (ridge width of the MBE grown layer) by cathodoluminescence (CL) measurements at 78 K. Compared to the InGaAs QW grown on a flat substrate, the In content of the InGaAs/GaAs QW on the ridge increases from 0.22 to 0.23 when the ridge top width decreases to about 2.9 μm, but it decreases steeply from 0.23 down to 0.12 with a further decrease of the ridge width from 2.9 to 0.05 μm. A simulation of MBE growth of InGaAs on the [001] ridges shows that this reduced In content for narrow ridges is due to a large migration of Ga atoms to the (100) ridge top region from {110} side facets.  相似文献   

2.
We have investigated InAs quantum effect devices based on both antimonides and arsenides. In an InAs quantum point contact device based on antimonides (InAs/AlGaSb), we have successfully reduced the leakage currents and observed quantum effects at around 77 K by optimizing the heterostructure growth and mesa-etched split-gate approach. Strained InAs quantum dots based on arsenides (AlInAs/AlAs/InAs/InGaAs/AlInAs) were successfully fabricated by MBE growth and mesa-etching. Blue-shifted photoluminescence was obtained from millions of quantum dots with an average lateral size of approximately 2000 å square.  相似文献   

3.
The InAlAs/InGaAs/InP high electron mobility transistor (HEMT) lattice matched to InP offers excellent high frequency, low noise operation for MMICs and low-noise amplifiers. The InP channel in the InP/InAlAs HEMT offers the advantages of improved high field velocity and higher breakdown voltages (the potential for higher power applications) over InGaAs channel HEMTs. InAlAs has been grown for the first time by CBE using TMAA producing InGaAs/InAlAs and InP/InAlAs HEMTs. Sub-micron InGaAs/InAlAs HEMTs with planar Si doping have been fabricated with ft values of 150 GHz and fmax values of 160 GHz. This device showed excellent pinch-off charateristics, with a maximum transconductance of 890 mS/mm. The planar doped InGaAs channel HEMT had a higher ft than a similar uniformly doped device. However, the non-optimized structure of the planar doped device resulted in a large output conductance of 120 mS/mm, limiting fmax for that device. A sub-micron InP channel device was grown with a quantum well channel and double-sided planar Si doping. A sheet charge density of 4.4×1012 cm-2 and associated room temperature mobility of 2800 cm2/V·s were achieved; however, the saturation current was low. The most likely causes for this are diffusion of the planar doping beneath the channel and the poor quality of the InP on InAlAs interface at the bottom of the quantum well channel.  相似文献   

4.
We have investigated the molecular beam epitaxial (MBE) growth mechanisms of nanometer scale GaAs ridge structures formed on patterned substrates and studied the way to control the widths of ridges and those of quantum wires grown on them. It is found that the width of the ridge structure decreases, as the growth temperature is reduced, reaching about 20 nm when grown below 580°C. The width of an AlAs ridge (10 nm at 570°C) is always found to be narrower than that of GaAs. A Monte Carlo simulation is performed to investigate the diffusion process of atoms in these ridge structures and indicates the important role of thermodynamical stability on the shape of a nanometer structure.  相似文献   

5.
T. R  hr  H. Kratzer  G. B  hm  W. Klein  G. Tr  nkle  G. Weimann 《Journal of Crystal Growth》1995,150(1-4):306-310
Quasi-one-dimensional GaAs structures were fabricated by molecular beam epitaxial regrowth on dry etched (AlGa)As surfaces, making use of the "self-adjusted" facetted growth on structured surfaces. The increased migration lengths and decreased sticking coefficients of the ad-atoms on higher indexed crystal planes lead to the formation of triangular, sharply peaked ridges with perfectly smooth sidewalls, having lateral dimensional fluctuations on the atomic scale over lengths of several 100 μm. The epitaxial deposition of a quantum well, i.e. a thin GaAs layer between (AlGa)As barriers, results in the direct growth of one-dimensional quantum wire structures at the vertex of the peaked ridges. The size of the GaAs wires can be controlled by the amount of Ga deposited between the (AlGa)As barriers. These one-dimensional structures show high yield in cathodoluminescence, without spectral shift over regions of hundreds of microns. Additional peaks in the CL spectra demonstrate the two-dimensional confinement of the quantum wires. Three-dimensionally confined quantum dots, also showing high luminescence yield, were found at the top of pyramidal structures grown on square mesas.  相似文献   

6.
We report on an X-ray study of an InAs/InGaAs/GaAs multi quantum dot stack grown by metalorganic chemical vapor deposition using grazing incidence reflectometry, high-resolution X-ray diffraction, reciprocal space mapping and pole figure analysis. No direct signal from the quantum dots is found by the high-resolution techniques. All rocking curves on different symmetric and asymmetric Bragg reflections can be simulated within the framework of dynamical theory assuming a perfect tretragonally distorted InAs/InGaAs/GaAs multiquantum well system. A pole figure analysis in the vicinity of the (113) and (022) reflections, however, reveals a signal from the quantum dots. There is a considerable indium enrichment in the quantum dots as compared to the wetting layer indicating a strong In-diffusion during their formation. Moreover, a strongly anisotropic diffuse scattering distribution with respect to the [110] and [1-10] directions is found.  相似文献   

7.
A simple thermodynamic model for As and P incorporation at the CBE-grown InGaAs/InP and InP/InGaAs interfaces has been developed. This model agrees with the X-ray diffraction and the photoluminescence features experimentally obtained from high-quality single quantum wells (SQWs) and multi-quantum wells (MQWs). Our experimental results compare well with the best published data and clearly show that monolayer interfaces can be obtained in this material system only by chosing the proper growth interruption (GI) conditions and accepting a strong mismatch at each interface. This effect could become dramatic in superlattice structures in which the QW period is smaller than 5 nm and the resulting strain could lead to poor crystal quality and optical properties.  相似文献   

8.
Heavily magnesium-doped p-type-InGaAs layers on InP(100) substrates were successfully grown, for the first time, by low-pressure metalorganic chemical vapor deposition (MOCVD) using bis-ethylcyclopentadienyl-magnesium, (C2H5C5H4)2Mg (EtCp2Mg), as organometallic precursor for the Mg. It was experimentally verified that the room-temperature hole concentration of Mg into InGaAs increased with increase of the V/III ratio and decrease of the growth temperature. A maximum hole concentration of over 4 × 1019 cm−3 was obtained. The diffusion coefficient of Mg in InGaAs was experimentally derived to be 10−12 cm2/s at 800°C, which was comparable to that of Be. Finally, InP/InGaAs heterojunction bipolar transistors (HBTs) with Mg-doped bases were fabricated successfully. Measured maximum current gain was about 320 with a 90 nm thick base and a sheet resistance of the base layer of 1.28 kΩ/sq.  相似文献   

9.
The In‐concentration in InGaAs quantum dots located within a GaAs matrix was determined with the composition evaluation by lattice fringe analysis (CELFA) technique. However, the results obtained with this method cannot account for the three‐dimensional shape of quantum dots and their embedding in GaAs. A correction procedure was developed that takes into consideration the shape of the quantum dots and the TEM sample thickness and quantum‐dot size. After correction, In‐concentration profiles show an increasing In‐content towards the top of the quantum dots which is consistent with the effect of In‐segregation and earlier studies using other experimental techniques. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
This paper reports on low-threshold InGaAs/InGaAsP multiple quantum well (MQW) lasers emitting at a wavelength of 1.52 μm. Separate confinement heterostructure (SCH) lasers were grown using chemical beam epitaxy (CBE) with source material pressure-control systems. A continuous wave threshold current of 12 mA and internal quantum efficiency of 73% (both facets) are observed in uncoated double-channel planar buried heterostructure (DCPBH) lasers. The internal loss is 15 cm-1. More than 90% of 50 laser chips have a threshold current of 15±3 mA.  相似文献   

11.
In this paper we present a novel growth of grade-strained bulk InGaAs/InP by linearly changing group-III TMGa source flow during low-pressure metalorganic vapor-phase epitaxy (LP-MOVPE).The high-resolution X-ray diffraction (HRXRD) measurements showed that much different strain was simultaneously introduced into the fabricated bulk InGaAs/InP by utilizing this novel growth method. We experimentally demonstrated the utility and simplicity of the growth method by fabricating common laser diodes. As a first step, under the injection current of 100 mA, a more flat gain curve which has a spectral full-width at half-maximum (FWHM) of about 120 nm was achieved by using the presented growth technique. Our experimental results show that the simple and new growth method is very suitable for fabricating broad-band semiconductor optoelectronic devices.  相似文献   

12.
Using digital-alloy InGaAlAs, 1.55 μm InGaAs/InGaAlAs multi-quantum wells were fabricated. It was found that the linewidth of 10 K-photoluminescence (PL) (5.7 meV) is narrower than that of conventional InGaAs/In(Ga)AlAs multi-quantum wells grown using present state-of-the-art growth methods. The narrower linewidth is attributed to the elongated effective-well-width and the increased 3 dimensional properties, due to carrier tunneling through the digital-alloy InGaAlAs barrier. The standard deviation of 300 K-PL peak wavelengths over the entire 2-in. wafer is 1.8 nm and the area ratio of the uniform PL peak intensity is approximately 64% of the entire wafer. This is the first report on this material system.  相似文献   

13.
The properties of self-assembled InAs quantum dots (QDs) grown by molecular beam epitaxy on GaAs substrates were investigated. The surface properties of samples were monitored by reflection high-energy electron diffraction to determine growth. Photoluminescence (PL) and transmission electron microscope (TEM) were then used to observe optical properties and the shapes of the InAs-QDs. Attempts were made to grow InAs-QDs using a variety of growth techniques, including insertion of the InGaAs strained-reducing layer (SRL) and the interruption of In flux during QD growth. The emission wavelength of InAs-QDs embedded in a pure GaAs matrix without interruption of In flux was about 1.21 μm and the aspect ratio was about 0.21. By the insertion InGaAs SRL and interruption of In flux, the emission wavelength of InAs-QDs was red shifted to 1.37 μm and the aspect ratio was 0.37. From the PL and TEM analysis, the properties of QDs were improved, particularly when interruption techniques were used.  相似文献   

14.
在InGaAs/GaAs表面量子点(SQDs)的GaAs势垒层中引入Si掺杂层,以研究Si掺杂对InGaAs/GaAs SQDs光学特性的影响。荧光发光谱(PL)测量结果显示,InGaAs/GaAs SQDs的发光强烈依赖于Si掺杂浓度。随着掺杂浓度的增加, SQDs的PL峰值位置先红移后蓝移; PL峰值能量与激光激发强度的立方根依赖关系由线性向非线性转变;通过组态交互作用方法发现SQDs的PL峰位蓝移减弱;时间分辨荧光光谱显示了从非线性衰减到线性衰减的转变。以上结果说明Si掺杂能够填充InGaAs SQDs的表面态,并且改变表面费米能级钉扎效应和SQDs的荧光辐射特性。本研究为深入理解与InGaAs SQDs的表面敏感特性关联的物理机制和载流子动力学过程,以及扩大InGaAs/GaAs SQDs传感器的应用提供了实验依据。  相似文献   

15.
The growth and intersubband optical properties of high quality heavily doped p-type GaAs/AlGaAs multiple quantum well (MQW) structures are reported. The MQWs were fabricated by the atmospheric pressure metalorganic vapor phase epitaxy process using liquid CCl4 to dope the wells with C acceptors (Na ≈ 2 × 1019 cm−3). A constant growth temperature was maintained for the entire structure while different V/III ratios were used for the well and barrier regions. By this process it is possible to achieve both high C doping densities in the wells and to simultaneously obtain good quality AlGaAs barriers. Fourier transform infrared spectroscopy measurements on heavily doped 10-period MQW structures reveal a new absorption peak at 2 μm with an effective normal incidence absorption coefficient of 4000 cm−1. Photocurrent measurements on mesa-shaped diodes show a corresponding peak at 2.1 μm. The photodiodes exhibit a symmetrical current-voltage characteristic and a low dark current, which are indicative of a high quality MQW structure and a well-controlled C doping profile. The 2 μm absorption represents the shortest wavelength ever reported for any GaAs/AlGaAs or InGaAs/AlGaAs MQW structure and should be very useful for implementing multicolor infrared photodetectors.  相似文献   

16.
Segregation processes entail severe deviations from the nominal composition profiles of heterostructures grown by molecular beam epitaxy for most semiconductor systems. It is, however, possible to compensate exactly these effects, as shown here for InGaAs/GaAs. The deposition of a one-monolayer-thick indium-rich prelayer of InGaAs (or of a sub-monolayer amount of InAs) prior to growth of InxGa1−xAs allows forming a perfectly abrupt InxGa1−xAs-on-GaAs interface. Thermal annealing can furthermore be performed at the GaAs-on-InGaAs inter face, so as to desorb surface indium atoms and suppress In incorporation in the GaAs overlayer. This powerful approach has been validated from a detailed study of the surface composition at various stages of the growth of InGaAs/GaAs quantum wells, as well as from high-resolution transmission electron microscopy and photoluminescence investigations.  相似文献   

17.
Vertical (0 1)-oriented parallel minor facets as smooth as cleaved ones were obtained by selective chemical beam epitaxy (CBE) on both sidewalls of [011]-direction ridges formed by reactive ion etching (RIE) on a (100) InP substrate. The obtained vertical facets often had a symmetric shape on the both sidewalls of the ridge, which was required to use as Fabry-Perot mirrors in a semiconductor laser, although an asymmetric shape had been often obtained before optimizing the growth conditions. We clarified the cause of asymmetry using simulation of the flux distribution on the sidewalls of the ridge during growth, and found the optimum growth conditions to obtain symmetric and parallel mirror facets.  相似文献   

18.
We have used the molecular beam growth technique which we call "cleaved edge overgrowth" to fabricate quantum wire lasers, in which 1D quantum confinement is entirely defined by the growth process. The active region of our lasers consists of atomically precise quantum wires that form at the T-shaped intersections of 7 nm wide GaAs quantum wells grown along the [001] crystal axis and after an in situ cleave along the [110] crystal axis. The origin of the quantum mechanical bound state is the relaxation of quantum well confinement at this intersection. The high degree of structural perfection achievable in this way allows the observation of stimulated optical emission from the lowest exciton state in optically as well as in electrically pumped devices. The formation of a linear p-n junction in which the quantum wires are embedded is achieved by doping with Be and Si in the two orthogonal growth directions. Efficient current injection into the wires is demonstrated by the almost complete suppression of optical emission from the quantum well states as well as by threshold currents as low as 0.4 mA for uncoated devices at 1.7 K.  相似文献   

19.
Using high-accuracy in situ curvature measurement during growth of InGaAs/GaAsP strain-compensated multiple quantum wells (MQWs) by metal organic vapor phase epitaxy (MOVPE), we have successfully clarified the effect of hetero-interfaces on strain control in InGaAs/GaAsP strain-balanced MQWs. By analyzing curvature transients and X-ray diffraction (XRD) fringe patterns, we found that an inadequate gas-switching sequence induces unintended atomic content at the interfaces between InGaAs and GaAsP and then influences the average strain of the structure. Through considering the atomic characteristics and measuring the reflectance anisotropy transient during growth, it has been revealed that the optimized stabilization time for arsenic and phosphorus mixture before GaAsP barrier growth should be longer than 3 s at 610 °C.  相似文献   

20.
High power and high speed surface emitting graded index separate confinement heterostructure (GRINSCH) LEDs with an InGaAs quantum well grown by metalorganic vapour phase epitaxy have been realized. The speed and the output power are affected by the thickness of the spacer layers separating the quantum well structure from the graded index layers and the growth sequence of the interface. A performance of 7.4 mW output power and 118 MHz speed, at 945 nm emitting wavelength, has been achieved when the spacer layer thickness is 50 Å with 30 s growth halts. The quantum and power efficiencies are 11% and 7.5%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号