首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We establish the full ground state phase diagram of the disordered Bose-Hubbard model in two dimensions at a unity filling factor via quantum Monte Carlo simulations. Similarly to the three-dimensional case we observe extended superfluid regions persisting up to extremely large values of disorder and interaction strength which, however, have small superfluid fractions and thus low transition temperatures. In the vicinity of the superfluid-insulator transition of the pure system, we observe an unexpectedly weak--almost not resolvable--sensitivity of the critical interaction to the strength of (weak) disorder.  相似文献   

3.
4.
赵红霞  赵晖  陈宇光  鄢永红 《物理学报》2015,64(10):107101-107101
应用密度矩阵重整化群方法, 研究了存在交错离子势Δ时一维半满扩展Hubbard模型的相图. 通过计算关联函数、结构因子、位置算符等方法, 描绘了从Mott绝缘体-键有序绝缘体-Band 绝缘体的特性并给出了精确的相边界. 研究发现: 中间的键有序绝缘体相在相图中占据了很小的一部分区域, 当存在离子势Δ的情况下, 这个区域将会有所增大; 而当相互作用足够强时, 这个中间相消失. 给出了离子Hubbard模型(最近邻电子-电子相互作用V=0)的相图.  相似文献   

5.
The local approach for the intraatomic correlation is applied to study the ground state phase diagram of the extended Hubbard model with a half-filled band. The long-range orders are not destroyed by the correlation effect in the limit of weak interaction, though the values of the order parameters are reduced from those of the Hartree-Fock approximation, especially for the antiferromagnetic-state. We find that the antiferromagnetic-charge order phase boundary is only slightly shifted towards the charge ordered state, while the phase boundary between the singlet superconducting and the charge ordered phases remains the same as that derived from the Hartree-Fock approximation.  相似文献   

6.
We determine the ground-state phase diagram of the one-dimensional half-filled Hubbard model with on-site (nearest-neighbor) repulsive interaction U (V) and nearest-neighbor hopping t using the density-matrix renormalization group technique. Based on the results of the excitation gaps, Luttinger-liquid exponents, and bond-order-wave (BOW) order parameter, we confirm that the BOW phase appears in a substantial region between the charge-density-wave (CDW) and spin-density-wave phases. Each phase boundary is determined by multiple means and it allows us to make a cross-check on the validity of our estimations. We also find that the BOW-CDW transition changes from continuous to first order at the tricritical point (U(t),V(t)) approximately (5.89 t,3.10 t) and the BOW phase shrinks to zero at the critical end point (U(c),V(c)) approximately (9.25 t,4.76 t).  相似文献   

7.
8.
The finite temperature phase diagram of the Hubbard model ind=2 andd=3 is calculated for arbitrary values of the parameterU/t and chemical potential using a quantum real space renormalization group. Evidence for a ferromagnetic phase at low temperatures is presented.  相似文献   

9.
We investigate the phase diagram of the three-dimensional Hubbard model at half filling using quantum Monte Carlo (QMC) simulations. The antiferromagnetic Néel temperature is determined from the specific heat maximum in combination with finite-size scaling of the magnetic structure factor. Our results interpolate smoothly between the asymptotic solutions for weak and strong coupling, respectively, in contrast to previous QMC simulations. The location of the metal-insulator transition in the paramagnetic phase above is determined using the electronic compressibility as criterion. Received 11 April 2000 and Revised in final form 29 June 2000  相似文献   

10.
11.
We reexamine the ground-state phase diagram of the one-dimensional half-filled Hubbard model with on-site and nearest-neighbor repulsive interactions. We calculate second-order corrections to coupling constants in the weak-coupling renormalization-group approach ( g-ology) to show that the bond-charge-density-wave (BCDW) phase exists for weak couplings in between the charge-density-wave (CDW) and spin-density-wave (SDW) phases. We find that the umklapp scattering of parallel-spin electrons destabilizes the BCDW state and gives rise to a bicritical point where the CDW-BCDW and SDW-BCDW continuous-transition lines merge into the CDW-SDW first-order transition line.  相似文献   

12.
The familiar unrestricted Hartree-Fock variational principles is generalized to include quasi-free states. As we show, these are in one-to-one correspondence with the one-particle density matrices and these, in turn, provide a convenient formulation of a generalized Hartree-Fock variational principle, which includes the BCS theory as a special case. While this generalization is not new, it is not well known and we begin by elucidating it. The Hubbard model, with its particle-hole symmetry, is well suited to exploring this theory because BCS states for the attractive model turn into usual HF states for the repulsive model. We rigorously determine the true, unrestricted minimizers for zero and for nonzero temperature in several cases, notably the half-filled band. For the cases treated here, we can exactly determine all broken and unbroken spatial and gauge symmetries of the Hamiltonian.Dedicated to Philippe Choquard on his 65th birthday.  相似文献   

13.
We consider ferromagnetism in spatially randomly located magnetic moments, as in a diluted magnetic semiconductor, coupled via the carrier-mediated indirect exchange RKKY interaction. We obtain, via Monte Carlo calculations, the magnetic phase diagram as a function of the impurity moment density n(i) and the relative carrier concentration n(c)/n(i). As evidenced by the diverging correlation length and magnetic susceptibility, the boundary between ferromagnetic and nonferromagnetic phases constitutes a line of zero temperature critical points which can be viewed as a magnetic percolation transition. In the dilute limit, we find that bulk ferromagnetism vanishes for n(c)/n(i) >0.1. We also incorporate the local antiferromagnetic direct superexchange interaction between nearest neighbor impurities and examine the impact of a damping factor in the RKKY range function.  相似文献   

14.
The transverse dynamic susceptibility of the 2D two-sublattice Hubbard model is calculated in the static-fluctuation approximation. The static magnetic susceptibility is studied as a function of various parameters of the system. The results for the special case of the one-dimensional Hubbard model are compared to the exact solution.  相似文献   

15.
In the present work we study the critical properties of the ferromagnetic three-color Ashkin-Teller model (3AT) by means of a Migdal-Kadanoff renormalization group approach on a diamond-like hierarchical lattice. The analysis of the fixed points and flux diagram of the recursion relations is used to determine the corresponding phase diagram (including its symmetry properties) and critical exponents. Our numerical results show the presence of four universality classes, three of them are associated to the Potts model with q=2, 4 and 6 states. Finally, a connection between our findings and some known results from the literature is presented.  相似文献   

16.
We show that soft-core bosons in two dimensions with a ring exchange term exhibit a tendency for phase separation. This observation suggests that the thermodynamic stability of normal Bose liquid phases driven by ring exchange should be carefully examined.  相似文献   

17.
A self-consistent harmonic approximation is used to study the Kosterlitz–Thouless phase transition and the quantum phase transition at T=0 K in the two-dimensional anisotropic quantum XY model.  相似文献   

18.
19.
We present a detailed study of the extended Hubbard-Peierls model on a square lattice using the slave-boson method proposed by Kotliar and Ruckenstein. The emphasis is on the investigation of the ground state phase diagram. To compare the relative stability of several homogenous phases, the effective bosonized action was evaluated by means of a two-sublattice saddlepoint approximation which allows for the symmetry broken states compatible with the underlying bipartite lattice structure. Paying particular attention to the interplay of electron-electron and electron-phonon interaction, we take into account various types of magnetic ordered phases, i.e. para-, ferro-, ferri-, and antiferromagnetic states, as well as charge ordered phases, e.g. a static (, ) Peierls distorted state. Furthermore the approach has been applied to the following special cases: the Hubbard model, the extended Hubbard model, and the Hubbard-Peierls model. A careful numerical solution of the corresponding self-consistency equations enables us to map out the ground-state phase diagrams of the various models at arbitrary band filling over the whole range of interaction strength. In the phase diagram of the Hubbard model we found a large region with ferrimagnetic order away from half-filling. The phase diagram of the halffilled band extended Hubbard model shows a first-order transition from a spin-density-wave to a charge-density-wave state which is displaced from the mean-field lineU=4V towards largerV. At large negativeU andV we obtain a domain with charge separation. The phase compares favorably with earlier quantum Monte-Carlo results. Including the local electron-phonon coupling the charge-density-wave region is considerably enlarged. Away from half-filling the phase diagram becomes more complex: besides the pure magnetic phases we obtain ferri- and paramagnetic states which show additional charge-density order. Aspects of phase separation are discussed. Finally we investigate the variation of the different gap and order parameters along characteristic lines in the parameter space and determine the renormalized quasiparticle bands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号