首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
High-pressure methods were applied to investigate the rotational isomerism and the hydrogen-bonding structures of 1-butyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium chloride, respectively. Conformation changes of the butyl chain were observed above a pressure of 0.3 GPa. Under ambient pressure, Raman spectra indicate that the more thermodynamically stable butyl structure of the cations is the gauche-anti (GA) and all-anti forms for 1-butyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium chloride, respectively. Nevertheless, the high-pressure phases arise from the perturbed GA conformer. The imidazolium C-H bands of 1-butyl-3-methylimidazolium chloride display anomalous nonmonotonic pressure-induced frequency shifts. This discontinuity in the frequency shift is related to the modification of the imidazolium C-H---Cl- contacts upon compression. The alkyl C-H---Cl- interactions are suggested to be a compensatory mechanism to provide additional stability. Density-functional-theory-calculated results also support the high-pressure results that the methyl and butyl C-H groups are suitable proton donor sites for the GA conformer.  相似文献   

2.
The condensation of 3,4-dicyano-5-aminopyrazole with ethyl orthoformate was studied. Under severe conditions (150 °C) the principal reaction product is N-ethyl-3,4-dicyano-5-ethoxymethylaminopyrazole. Alkylation of the pyrazole ring does not occur at 100 °C, but 3,4-dicyano-5-ethoxymethyleneaminopyrazole is formed. Isomeric 1- and 2-ethyl-4-aminopyrazolo[2,4-d]pyrimidine-3-carboxylic acid methyl imino esters were obtained by the action of a methanol solution of ammonia on the principal reaction product. This constitutes evidence that N-ethyl-3,4-dicyano-5-ethoxymethyleneaminopyrazole is a mixture of 1- and 2-ethyl-3,4-dicyano-5-ethoxymethyleneaminopyrazoles.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1682–1685, December, 1982.  相似文献   

3.
The reaction of 4,6-dinitroisophthalaldehyde and 4,6-dinitroisophthalonitrile with pyridine 4, 6-Dinitroisophthalaldehyde ( 4 ) gives on reaction with pyridine 4,6-diformyl-3-(1′-pyridinio)-1-phenolate ( 5 ), whereas 4,6-dinitroisophthalonitrile ( 7 ) gives under the same conditions one main product: 3-(1′)-pyridinio-4, 6-dicyano-1-phenolate ( 10 ) and two side products: 2-(1′-pyridinio)-4, 6-dicyano-3-nitro-1-phenolate ( 11 ) and 4, 6-dicyano-3-nitro-1-phenol ( 12 ). The new structures were elucidated by 1H-NMR. and 13C-NMR. spectroscopy.  相似文献   

4.
Reactions of 4,5-diaminophthalodinitrile with thionyl chloride, sodium nitrite in concentrated sulfuric acid, and phenanthrenequinone gave, respectively, 5,6-dicyano-2,1,3-benzothiadiazole, 5,6-dicyano- 1H-benzotriazole, and 6,7-dicyano-2,3-(9,10-phenanthro)quinoxaline, from which the corresponding cobalt porphyrazines were prepared. The effect of the heterocyclic moiety on the physicochemical and spectral properties of porphyrazines was elucidated.  相似文献   

5.
A complementary double‐covalent functionalization of single‐wall carbon nanotubes (SWCNTs) that involves both solubilizing ionic liquids and electroactive moieties is reported. Our strategy is a simple and efficient methodology based on the stepwise functionalization of the nanotube surface with two different organic moieties. In a first instance, oxidized SWCNTs are amidated with ionic liquid precursors, and further treated with n‐butyl bromide to afford SWCNTs functionalized with 1‐butylimidazolium bromide. This approach allows tuneable polarity induced by anion exchange, which has an effect on the relative solubility of the modified SWCNTs in water. Subsequently, a 1,3‐dipolar cycloaddition reaction was performed to introduce the electron‐acceptor 11,11,12,12‐tetracyano‐9,10‐anthra‐para‐quinodimethane (TCAQ) unit on the SWCNTs. Furthermore, to evaluate the influence of the functional group position, the TCAQ electroactive molecule was anchored through an esterification reaction onto previously oxidized SWCNTs, followed by the Tour reaction to introduce the ionic liquid functions. IR and Raman spectroscopies, thermogravimetric analysis (TGA), UV/Vis/NIR spectroscopy, transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS) were employed and clearly confirmed the double‐covalent functionalization of the SWCNTs.  相似文献   

6.
9-Fluorenylidenemalononitrile reacts with 10-methyl-9,10-dihydroacridine in deaerated acetonitrile under irradiation with lambda > 320 nm to give a coupling product 9-dicyanomethyl-9-(10'-methyl-9'-acridinyl)fluorene, characterized by X-ray crystallographic, MS and NMR analyses.  相似文献   

7.
According to the DFT calculations, [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (4), [1,2,5]selenadiazolo[3,4-c][1,2,5]thiadiazole (5), 3,4-dicyano-1,2,5-thiadiazole (6), and 3,4-dicyano-1,2,5-selenadiazole (7) have nearly the same positive electron affinity (EA). Under the CV conditions they readily produce long-lived π-delocalized radical anions (π-RAs) characterized by EPR. Whereas 4 and 5 were chemically reduced into the π-RAs with thiophenolate (PhS(-)), 6 did not react and 7 formed a product of hypercoordination at the Se center (9) isolated in the form of the thermally stable salt [K(18-crown-6)][9] (10). The latter type of reactivity has never been observed previously for any 1,2,5-chalcogenadiazole derivatives. The X-ray structure of salt 10 revealed that the Se-S distance in the anion 9 (2.722 ?) is ca. 0.5 ? longer than the sum of the covalent radii of these atoms but ca. 1 ? shorter than the sum of their van der Waals radii. According to the QTAIM and NBO analysis, the Se-S bond in 9 can be considered a donor-acceptor bond whose formation leads to transfer of ca. 40% of negative charge from PhS(-) onto the heterocycle. For various PhS(-)/1,2,5-chalcogenadiazole reaction systems, thermodynamics and kinetics were theoretically studied to rationalize the interchalcogen hypercoordination vs reduction to π-RA dichotomy. It is predicted that interaction between PhS(-) and 3,4-dicyano-1,2,5-telluradiazole (12), whose EA slightly exceeds that of 6 and 7, will lead to hypercoordinate anion (17) with the interchalcogen Te-S bond being stronger than the Se-S bond observed in anion 9.  相似文献   

8.
3-Aminoimidazo[1,2-a]pyridines have been synthesized in good to excellent yields in the presence of the ionic liquid 1-butyl-3-methylimidazolium bromide [bmim]Br, the reaction workup is simple and the ionic liquid can be easily separated from the product and reused.  相似文献   

9.
Summary The reaction of 2-(10-diazo-10H-anthracen-9-ylidene)-malonodinitrile (1) with the cryptohydride system formic acid - triethylamine was studied. The reaction product turned out to be anthracen-9-yl-acetonitrile (2a) instead of the expected 10-dicyanomethyl-9,10-dihydro-anthracene-9-yl formate. Compounds related to1 yielded in this reaction the corresponding 10-substituted anthracen-9-yl-acetonitriles. A mechanism of this reaction is proposed. The product of the formic acid promoted decomposition of1, compound3b, as well as its tautomer4b were also obtained.
Zur Reaktion von 2-(10-Diazo-10H-anthracen-9-yliden)-malodinitril und Verwandten Verbindungen mit dem Kryptohydridsystem Ameisensäure - Triethylamin
Zusammenfassung Die Reaktion von 2-(10-Diazo-10H-anthracen-9-yliden)-malodinitril (1) mit dem Kryptohydridsystem Ameisensäure — Triethylamin wurde untersucht. Das Umsetzungsprodukt stellte sich als Anthracen-9-yl-acetonitril (2a) und nicht als erwartetes 10-Dicyanomethyl-9,10-dihydroanthracen-9-yl-format heraus. Verwandte Verbindungen reagierten in dieser Reaktion zu 10-substituierten Anthracen-9-yl-acetonitrilen. Ein Mechanismus für diese Reaktion wird vorschlagen. Das Produkt der durch Ameisensäure initiierten Zersetzung von1, Verbindung3b, wie auch sein Tautomer4b, wurden ebenfalls dargestellt.
  相似文献   

10.
The reaction of 9,10‐dibromo‐9,10‐dihydro‐9,10‐diboraanthracene (9,10‐dibromo‐DBA, 3 ) with two equivalents of 9‐lithio‐2,6‐ or 9‐lithio‐2,7‐di‐tert‐butylanthracene gave the corresponding 9,10‐dianthryl‐DBAs featuring two ( 4 ) or four ( 5 ) inward‐pointing tert‐butyl groups. Compound 4 exists as two atropisomers, 4 and 4′ , due to hindered rotation about the exocyclic B? C bonds. X‐ray crystallography of 5 suggests that the overall interactions between facing tert‐butyl groups are attractive rather than repulsive. Even in solution, 4 / 4′ and 5 are stable toward air and moisture for several hours. Treatment of 3 with 10‐lithio‐9‐R‐2,7‐di‐tert‐butylanthracenes carrying phenyl (R=Ph), dimesitylboryl (R=Mes2B), or N,N‐di(p‐tolyl)amino (R=Tol2N) groups gave the corresponding 9,10‐dianthryl‐DBA derivatives 9 – 11 in moderate to good yields. In these molecules, all four solubilizing tert‐butyl groups are outward pointing. The solid‐state structures of 4 , 5 , 9 , and 10 reveal twisted conformations about the exocyclic B? C bonds with dihedral angles of 70–90°. A significant electron‐withdrawing character was proven for the Mes2B moiety, but no appreciable +M effect was evident for Tol2N. Compounds 5 , 9 , and 11 show two reversible DBA‐centered reduction waves in the cyclic voltammogram. In the case of 10 , a third reversible redox transition can be assigned to the Mes2B–anthryl substituents. The UV/Vis absorption spectrum of 5 is characterized by a very broad band at λmax=510 nm, attributable to a twisted intramolecular charge‐transfer interaction from the anthryl donors to the DBA acceptor. The corresponding emission band shows pronounced positive solvatochromism (λem=567 nm, C6H12; 680 nm, CH2Cl2) in line with a highly polar excited state. The charge‐transfer bands of 10 and 11 , as well as the emission bands of 9 and 10 , are redshifted relative to those of 5 . The Tol2N derivative 11 is essentially nonfluorescent in solution, but emits bright wine‐red light in the solid state.  相似文献   

11.
合成了一系列的10-苄基吖啶酮类化合物, 并探讨了一种用硼氢化钠氢化还原吖啶酮制备10-苄基-9,10-二氢吖啶的简便方法. 吖啶酮1与氯化苄及其衍生物2在氢化钠/N,N-二甲基甲酰胺/碘化钾中反应高产率生成10-苄基吖啶酮类化合物3; 3经硼氢化钠氢化还原生成10-苄基-9,10-二氢吖啶类化合物4, 产率88%~96%. 反应中没有得到预期的产物10-苄基-9,10-二氢吖啶醇类化合物4’, 其反应机理可能是3首先被硼氢化钠还原成醇中间体4’, 4’在硼氢化钠存在下不稳定, 迅速地被进一步还原成4.  相似文献   

12.
5,11-Disubstituted derivatives of 1′-isopropyl-8-thioxospiro[3,5,7,11-tetrazatricyclo[7.3.1.02,7]tridec-2-ene-13,4′-piperidine]-1,9-dicar bonitrile was obtained by the interaction of 10-amino-9-aza-3-azonia-7,11-dicyano-3-isopropylspiro[5,5]undeca-7,10-diene-8-thiolate with 2 equiv. of a primary amine and excess of formaldehyde. An anomalous reaction product was obtained with o-toluidine — 7,9-dicyano-1′-isopropyl-3-(2-methylphenyl)-1,2,3,4-tetrahydrospiro[pyrido[1,2-a][1,3,5]triazine-8,4′-piper idinium]-6-thiolate. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, 1709–1713, November, 2007.  相似文献   

13.
The glycolysis of poly(ethylene terephthalate) (PET) was studied using several ionic liquids and basic ionic liquids as catalysts. The basic ionic liquid, 1-butyl-3-methylimidazolium hydroxyl ([Bmim]OH), exhibits higher catalytic activity for the glycolysis of PET, compared with 1-butyl-3-methylimidazolium bicarbonate ([Bmim]HCO3), 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1-butyl-3-methylimidazolium bromide ([Bmim]Br). FT-IR, 1H NMR and DSC were used to confirm the main product of glycolysis was bis(2-hydroxyethyl) terephthalate (BHET) monomer. The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and dosages of ethylene glycol on the conversion of PET, yield of BHET were investigated. The results showed a strong influence of the mixture evolution of temperature and reaction time on depolymerization of PET. Under the optimum conditions of m(PET):m(EG): 1:10, dosage of [Bmim]OH at 0.1 g (5 wt%), reaction temperature 190 °C and time 2 h, the conversion of PET and the yield of BHET were 100% and 71.2% respectively. Balance between the polymerization of BHET and depolymerization of PET could be changed when the reaction time was more than 2 h and contents of catalyst and EG were changed.  相似文献   

14.
Although P(CH(3)NCH(2)CH(2))(3)N (1) was found to be less effective than 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in the removal of hydrogen bromide from vitamin A intermediates 13-cis-10-bromo-9,10-dihydroretinyl acetates (6) and 14-bromo-9,14-dihydroretinyl acetate (11) when the reaction was carried out in refluxing benzene, in acetonitrile at room temperature it was superior to DBN and DBU. A (31)P NMR study of this reaction suggests that the carbanion generated from acetonitrile-d(3) in the presence of 1 is the basic species that initiates the elimination step. Diastereoselectivity of the nucleophilic addition of (Z)-HC triple bond C(CH(3))=CHCH(2)OH to the carbonyl group of (E)-2-methyl-4-(2',6',6'-trimethyl-1'-cyclohexen-1'-yl)-3-butenal (2) was only moderate (20%), and (9R,10S)-13-cis-11,12-didehydro-9,10-dihydro-10-hydroxyretinol (3b) predominated. The LiAlH(4) reduction of the C triple bond C bond in the diastereoisomeric diols 3 afforded 13-cis-9,10-dihydro-10-hydroxyretinols 4a and 4b as major products together with 11-cis-13-cis-isomers and the deoxygenated compound (3EZ,5EZ,8E)-3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1,3,5,8-nonatetraene (9). Reaction of 15-acetates of the pure diastereoisomeric allylic alcohols 4a and 4b with PBr(3) occurred with significant but not identical retention of configuration, and with concomitant formation of the rearranged bromide 11.  相似文献   

15.
Stereodefined multisubstituted 1-cyano- and 1,4-dicyano-1,3-butadiene derivatives were obtained in excellent yields of the isolated product from their corresponding monohalo- and dihalobutadienes and CuCN. This reaction proceeded with high stereoselectivity and retention of the stereochemistry of the starting halobutadienes. A study of the utility of the thus-obtained 1-cyano- and 1,4-dicyano-1,3-butadiene derivatives was demonstrated by their reactions with organolithium reagents. 2H-Pyrrole or iminocyclopentadiene derivatives were formed in high yields from 1-cyano-4-halo-1,3-butadienes and organolithium reagents. When 1,4-dicyano-1,3-butadienes were treated with organolithium reagents followed by trapping with electrophiles, a tandem process took place to afford 2H-pyrrolyl nitriles in excellent yields. Reduction of 1,4-dicyano-1,3-butadiene derivatives with LiAlH4 showed novel reaction patterns relative to normal nitriles.  相似文献   

16.
Benzo[b][1,4]oxazines have been synthesized in good to excellent yields in the presence of the ionic liquid 1-butyl-3-methylimidazolium bromide [bmim]Br under relatively mild conditions without any added catalyst, The method offers the advantages of good yields and short reaction times, and the ionic liquid can be easily separated from the product and reused.  相似文献   

17.
3-(2′-Benzothiazolo)-2,3-dihydroquinazolin-4(1H)-ones have been synthesized in high yields in the presence of 1-butyl-3-methylimidazolium bromide [bmim]Br as an ionic liquid; the reaction work-up is simple and the ionic liquid can be easily separated from the product and reused.  相似文献   

18.
The effect of pressure on the oxidation of hydroarenes 3-9 with 2,3-dichloro-5,6-dicyano-1,4-quinone (DDQ; 1 a) or o-chloranil (10), leading to the corresponding arenes, has been investigated. The activation volumes were determined from the pressure dependence of the rate constants of these reactions monitored by on-line UV/Vis spectroscopic measurements in an optical high-pressure cell (up to 3500 bar). The finding that they are highly negative and only moderately dependent on the solvent polarity (DeltaV( not equal ) = -13 to -25 in MTBE and -15 to -29 cm(3) mol(-1) in MeCN/AcOEt, 1:1) rules out the formation of ionic species in the rate-determining step and is good evidence for a hydrogen atom transfer mechanism leading to a pair of radicals in the rate-determining step, as was also suggested by kinetic measurements, studies of kinetic isotope effects, and spin-trapping experiments. The strong pressure dependence of the kinetic deuterium isotope effect for the reaction of 9,10-dihydroanthracene 5/5-9,9,10,10-D(4) with DDQ (1 a) can be attributed to a tunneling component in the hydrogen transfer. In the case of formal 1,3-dienes and enes possessing two vicinal C--H bonds, which have to be cleaved during the dehydrogenation, a pericyclic hydrogen transfer has to considered as one mechanistic alternative. The comparison of the kinetic deuterium isotope effects determined for the oxidation of tetralin 9/9-1,1,4,4-D(4)/9-2,2,3,3-D(4)/9-D(12) either with DDQ (1 a) or with thymoquinone 1 c indicates that the reaction with DDQ (1 a) proceeds in a stepwise manner through hydrogen atom transfer, analogously to the oxidations of 1,4-dihydroarenes, whereas the reaction with thymoquinone 1 c is concerted, following the course of a pericyclic hydrogen transfer. The difference in the mechanistic courses of these two reactions may be explained by the effect of the CN and Cl substituents in 1 a, which stabilize a radical intermediate better than the alkyl groups in 1 c. The mechanistic conclusions are substantiated by DFT calculations.  相似文献   

19.
Base-catalyzed interaction of 3,6-di-tert-butyl-1,2-benzoquinone with malononitrile mainly occurs as 1,4-addition to give 3,6-di-tert-butyl-4-dicyanomethylpyrocatechol. Its oxidation leads to 3,6-di-tert-butyl-4-dicyanomethyl-1,2-benzoquinone, which converts into 3,6-di-tert-butyl-2-hydroxy-α,α-dicyano-1,4-quinomethane in solution and in the solid state. The latter rearranges into isomeric 3,6-di-tert-butyl-5-dicyanomethylenecyclohex-3-ene-1,2-dione. Reverse conversion occurs under the action of amines. Semiquinone complexes of dicyanomethylquinone were studied in solutions by ESR.  相似文献   

20.
Indium-mediated addition of allyl bromide to 1,1-dicyano-2-arylethenes gives Michael addition products in aqueous media with good yields. The reaction need neither any activation nor in inert atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号