共查询到20条相似文献,搜索用时 0 毫秒
1.
Shock-wave model of liquid cavitation due to an acoustic wave was developed, showing how the primary energy of an acoustic radiator is absorbed in the cavitation region owing to the formation of spherical shock-waves inside each gas bubble. The model is based on the concept of a hypothetical spatial wave moving through the cavitation region. It permits using the classical system of Rankine-Hugoniot equations to calculate the total energy absorbed in the cavitation region. Additionally, the model makes it possible to explain some newly discovered properties of acoustic cavitation that occur at extremely high oscillatory velocities of the radiators, at which the mode of bubble oscillation changes and the bubble behavior approaches that of an empty Rayleigh cavity. Experimental verification of the proposed model was conducted using an acoustic calorimeter with a set of barbell horns. The maximum amplitude of the oscillatory velocity of the horns' radiating surfaces was 17 m/s. Static pressure in the calorimeter was varied in the range from 1 to 5 bars. The experimental data and the results of the calculations according to the proposed model were in good agreement. Simple algebraic expressions that follow from the model can be used for engineering calculations of the energy parameters of the ultrasonic radiators used in sonochemical reactors. 相似文献
2.
This paper reports on theoretical research into the dynamics, acoustic noise and noise spectrum of a single cavitation bubble affected by non-gradiental acoustic fields. It is shown that all the characteristic features of experimental acoustic cavitation spectra occur in the spectrum of a single bubble. 相似文献
3.
Theoretical treatments of the dynamics of a single bubble in a pressure field have been undertaken for many decades. Although there is still scope for progress, there now exists a solid theoretical basis for the dynamics of a single bubble. This has enabled useful classifications to be established, including the distinction between stable cavitation (where a bubble pulsates for many cycles) and transient cavitation (where the bubble grows extensively over time-scales of the order of the acoustic cycle, and then undergoes an energetic collapse and subsequent rebound and then, potentially, either fragmentation, decaying oscillation or a repeat performance). Departures from sphericity, such as shape and surface oscillations and jetting, have also been characterized. However, in most practical systems involving high-energy cavitation (such as those involving sonochemical, biological and erosive effects), the bubbles do not behave as the isolated entities modelled by this single-bubble theory: the cavitational effect may be dominated by the characteristics of the entire bubble population, which may influence, and be influenced by, the sound field. The well established concepts that have resulted from the single-bubble theory must be reinterpreted in teh light of the bubble population, an appreciation of population mechanisms being necessary to apply our understanding of single-bubble theory to many practical applications of ‘power’ ultrasound. Even at a most basic level these single-bubble theories describe the response of the bubble to the local sound field at the position of the bubble, and that pressure field will be influenced by the way sound is scattered by neighbouring bubbles. The influence of the bubble population will often go further, a non-uniform sound field creating an inhomogeneous bubble distribution. Such a distribution can scatter, channel and focus ultrasonic beams, can acoustically shield regions of the sample, and elsewhere localize the cavitational activity to discrete ‘hot spots’. As a result, portions of the sample may undergo intense sonochemical activity, degassing, erosion, etc., whilst other areas remain relatively unaffected. Techniques exist to control such situations where they are desirable, and to eliminate this localization where a more uniform treatment of the sample is desired. 相似文献
4.
We built and tested a double-loop thermoacoustic cooler consisting of an engine-loop, a branch resonator, and a cooler-loop. The cooling power of 6.4 W was obtained at the cooling temperature of 0 degrees C, when the input heat power of 416 W was supplied to the engine-loop. We measured the acoustic power and found that the output power emitted from the engine-loop was 12 W, and that the input acoustic power entering the cooler-loop was 6 W. 相似文献
5.
In this paper, the decomposition of Rhodamine B (RhB) by hydrodynamic cavitation (HC), acoustic cavitation (AC) and the combination of these individual methods (HAC) have been investigated. The degradation of 20 L RhB aqueous solution was carried out in a self-designed HAC reactor, where hydrodynamic cavitation and acoustic cavitation could take place in the same space simultaneously. The effects of initial concentration, inlet pressure, solution temperature and ultrasonic power were studied and discussed. Obvious synergies were found in the HAC process. The combined method achieved the best conversion, and the synergistic effect in HAC was even up to 119% with the ultrasonic power of 220 W in a treatment time of 30 min. The time-independent synergistic factor based on rate constant was introduced and the maximum value reached 40% in the HAC system. Besides, the hybrid HAC method showed great superiority in energy efficiency at lower ultrasonic power (88–176 W). Therefore, HAC technology can be visualized as a promising method for wastewater treatment with good scale-up possibilities. 相似文献
6.
The broad-band noise has been experimentally used to monitor the cavitation activity in a sonochemical reactor, an ultrasonic cleaning bath, a biological tissue, etc. However, the origin of the broad-band noise is still under debate. In the present review, two models for the mechanism of the broad-band noise are discussed. One is acoustic emissions from chaotically (non-periodically) pulsating bubbles. The other is acoustic emissions from bubbles with temporal fluctuation in the number of bubbles. It is suggested that the latter mechanism is sometimes dominant. Further studies are required on the role for bubble cluster dynamics as well as the bubble–bubble interaction in the broad-band noise especially at relatively low ultrasonic frequencies. 相似文献
7.
A unique, new stand-alone acoustic inertial confinement nuclear fusion test device was successfully tested. Experiments using four different liquid types were conducted in which bubbles were self-nucleated without the use of external neutrons. Four independent detection systems were used (i.e., a neutron track plastic detector to provide unambiguous visible records for fast neutrons, a detector, a NE-113-type liquid scintillation detector, and a NaI gamma ray detector). Statistically significant nuclear emissions were observed for deuterated benzene and acetone mixtures but not for heavy water. The measured neutron energy was 相似文献
8.
In general, ultrasound is commonly used at low power level for non-destructive testing (NDT) and detection of delaminations in adhesive bonded structures. The present paper instead presents an approach where power ultrasound is used to improve interface formation prior to the bonding process and to ensure the quality of adhesive bonds by using acoustic cavitation in the liquid adhesive.Results from high-speed videos, rheological and thermal measurements and destructive testing of adhesive bonds with contaminated surfaces are presented and discussed. Power ultrasound can be used in general to improve adhesion and significantly to improve contamination tolerance and robustness of adhesive bonding processes. 相似文献
9.
声空化气泡内的高温、高压和高密度是声空化工程的机理和基础。该文简要回顾了国内外声空化理论和实验研究的进展,针对当前在液体中进行工业规模声处理等声能应用方面的现状和存在的问题,提出了扩大声能应用的一种可能途径——声空化空间分布控制并在实验室内进行了实验研究。结果表明该方法具有可行性。在此基础上,文中给出了基于空化空间分布控制方法在稠油井口辅助降粘和高固污泥预处理方面取得声空化工程初步应用的两个例子。现场的试验结果表明,这两种声空化工程化样机在实际现场工况条件下,均取得了较好的应用效果。最后,对当前声空化工程应用前景进行了初步探讨。 相似文献
10.
The generation and control of acoustic cavitation structure are a prerequisite for application of cavitation in the field of ultrasonic sonochemistry and ultrasonic cleaning. The generation and control of several typical acoustic cavitation structures (conical bubble structure, smoker, acoustic Lichtenberg figure, tailing bubble structure, jet-induced bubble structures) in a 20–50 kHz ultrasonic field are investigated. Cavitation bubbles tend to move along the direction of pressure drop in the region in front of radiating surface, which are the premise and the foundation of some strong acoustic cavitation structure formation. The nuclei source of above-mentioned acoustic cavitation structures is analyzed. The relationship and mutual transformation of these acoustic cavitation structures are discussed. 相似文献
11.
A new approach is proposed for explaining the experimental data on sonoluminescence of acoustic and laser-induced cavitation bubbles. It is suggested that two different sonoluminescence mechanisms, namely, thermal and electric ones, are possible and that they manifest themselves depending on the bubble dynamics. An intense thermal luminescence occurs as a result of compression of an individual stationary spherical bubble; a weak electric luminescence accompanies the deformation and splitting of the bubble when thermal luminescence is suppressed (for example, in the case of multibubble sonoluminescence). It is shown that, when an individual bubble loses its spherical shape under the effect of different actions (change in the acoustic pressure, artificial deformation, translatory motion, etc.) or when a laser-induced bubble undergoes fragmentation, the sonoluminescence spectrum exhibits specific bands that are similar to the bands in the multibubble sonoluminescence spectrum. The appearance of these bands is attributed to the suppression of the thermal sonoluminescence mechanism and the manifestation of the electric mechanism. It is shown that the maximum temperature T max characterizing the compression of a laser-induced bubble is primarily determined by the temperature of the plasma at the instant of the laser-induced breakdown, whereas, for an acoustic bubble, T max is primarily determined by the acoustic and hydrostatic pressures and by the saturation vapor pressure of the liquid. 相似文献
12.
Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner. 相似文献
13.
Cleaning and erosion of objects by ultrasound in liquids are caused by the action of acoustic cavitation bubbles. Experiments have been performed with respect to the erosive effect of multibubble structures on painted glass surfaces and on aluminium foils in an ultrasonic standing wave field at 40 kHz. High-speed imaging techniques have been employed to investigate the mechanisms at work, in particular bubble interaction and cluster formation near and at the object surfaces. It was found that different prototype bubble structures can contribute to the erosion process. Some are bound to the surface, which seems to act as a bubble source in this case, while others also exist independently from the object. Cleaning and erosion effects at the pressure antinodes can vary strongly as they depend on the emerging bubble structures. These, in turn, seem to be substantially influenced by properties and the history of the surface. 相似文献
15.
Acoustic cavitation energy distributions were investigated for various frequencies such as 35, 72, 110 and 170 kHz in a large-scale sonoreactor. The energy analyses were conducted in three-dimensions and the highest and most stable cavitation energy distribution was obtained not in 35 kHz but in 72 kHz. However, the half-cavitation-energy distance was larger in the case of 35 kHz ultrasound than in the case of 72 kHz, demonstrating that cavitation energy for one cycle was higher for a lower frequency. This discrepancy was due to the large surface area of the cavitation-energy-meter probe. In addition, 110 and 170 kHz ultrasound showed a very low and poor cavitation energy distribution. Therefore larger input power was required to optimize the use of higher frequency ultrasound in the sonoreactor with long-irradiation distance. The relationship between cavitation energy and sonochemical efficiency using potassium iodide (KI) dosimetry was best fitted quadratically. From 7.77 × 10 ?10 to 4.42 × 10 ?9 mol/J of sonochemical efficiency was evaluated for the cavitation energy from 31.76 to 103. 67 W. In addition, the cavitation energy attenuation was estimated under the assumption that cavitation energy measured in this study would be equivalent to sound intensity, resulting in 0.10, 0.18 and 2.44 m ?1 of the attenuation coefficient ( α) for 35, 72 and 110 kHz, respectively. Furthermore, α/(frequency) 2 was not constant, as some previous studies have suggested. 相似文献
16.
为了简便、直观地测量功率超声珩磨磨削区的空化声场强度及分布情况,提出了利用弱酸PH试纸测量磨削区空化声场的方法。利用超声空化效应产生的弱酸空化泡在PH试纸表面溃灭后,形成深浅和分布不同的变色区域,间接地表征油石表面空化声场的强弱和分布规律。通过对比不同超声频率、测试距离和时间,得出了最佳测试距离和时间。结果表明,当超声频率为18.6 kHz,距离为10 mm时,测得油石表面的空化声场强度和分布最佳。该方法可形象地评价功率超声珩磨磨削区空化声场的强度和分布情况,具有一定的实际应用价值。 相似文献
17.
Microbubbles promise to enhance the efficiency of ultrasound-mediated drug delivery and gene therapy by taking advantage of artificial cavitation nuclei.The purpose of this study is to examine the ultrasound-induced hemolysis in the application of drug delivery in the presence of microbubbles.To achieve this goal,human red blood cells mixed with microbubbles were exposed to 1-MHz pulsed ultrasound.The hemolysis level was measured by a flow cytometry,and the cavitation dose was detected by a passive cavitation detecting system.The results demonstrate that larger cavitation dose would be generated with the increase of acoustic pressure,which might give rise to the enhancement of hemolysis.Besides the experimental observations,the acoustic pressure dependence of the radial oscillation of microbubble was theoretically estimated.The comparison between the experimental and calculation results indicates that the hemolysis should be highly correlated to the acoustic cavitation. 相似文献
19.
There is currently renewed interest in cavitation thresholds in connection with industrial and medical applications of ultrasound. This paper is a review of the theory relating to thresholds. In particular, it shows how these thresholds can be located using simple approximate formulae. The paper also examines a number of interesting cyclic processes that take place around the thresholds. The paper is an expanded form of recent seminars. 相似文献
|