首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metal complexes possessing the intercalating dppz ligand (dppz = dipyrido[3,2-a:2',3'-c]phenazine) typically bind ds-DNA through intercalation (K(b) approximately 10(5)-10(6) M(-1)), and DNA photocleavage by these complexes with visible light proceeds through the generation of a reactive oxygen species. The DNA binding and photocleavage by [Rh(2)(mu-O(2)CCH(3))(2)(eta(1)-O(2)CCH(3))(CH(3)OH)(dppz)](+) (2) is reported and compared to that of Rh(2)(mu-O(2)CCH(3))(4) (1). Spectral changes and an increase in viscosity provide evidence for the intercalation of 2 to double stranded DNA with K(b) = 1.8 x 10(5) M(-1). DNA photocleavage by 2 is observed upon irradiation with lambda(irr) > 395 nm both in air and deoxygenated solution. DNA photocleavage is not observed for 1 or free dppz ligand under these irradiation conditions. The coupling of a single dppz ligand to a dirhodium(II/II) bimetallic core in 2 provides a means to access oxygen-independent DNA photocleavage with visible light.  相似文献   

2.
Three molecular structures are reported which utilize the NiN(2)S(2) ligands -, (bis(mercaptoethyl)diazacyclooctane)nickel and -', bis(mercaptoethyl)diazacycloheptane)nickel, as metallodithiolate ligands to rhodium in oxidation states i, ii and iii. For the Rh(I) complex, the NiN(2)S(2) unit behaves as a bidentate ligand to a square planar Rh(I)(CO)(PPh(3))(+) moiety with a hinge or dihedral angle (defined as the intersection of NiN(2)S(2) and S(2)Rh(C)(P) planes) of 115 degrees . Supported by -' ligands, the Rh(II) oxidation state occurs in a dirhodium C(4) paddlewheel complex wherein four NiN(2)S(2) units serve as bidentate bridging ligands to two singly-bonded Rh(II) ions at 2.893(8) A apart. A compilation of the remarkable range of M-M distances in paddlewheel complexes which use NiN(2)S(2) complexes as paddles is presented. The Rh(III) state is found as a tetrametallic [Rh(-')(3)](3+) cluster, roughly shaped like a boat propeller and structurally similar to tris(bipyridine)metal complexes.  相似文献   

3.
Terpyridine copper(II) complexes [Cu(L)2](NO3)2, where L is (4′-phenyl)-2,2′:6′,2′′-terpyridine (ph-tpy in 1) and [4′-(1-pyrenyl)]-2,2′:6′,2′′-terpyridine (py-tpy in 2), are prepared, characterized and their photocytotoxic activity studied. The crystal structure of complex 1 shows distorted octahedral CuN6 coordination geometry. The 1:2 electrolytic and one-electron paramagnetic complexes show a visible band near 650 nm in DMF–H2O. The complexes show emission band at 352 nm for 1 and 425 nm for 2 when excited at 283 and 346 nm, respectively. The Cu(II)–Cu(I) redox couple is observed near −0.2 V versus SCE in DMF–0.1 M TBAP. The complexes are avid partial-intercalative binders to calf thymus DNA giving binding constant (Kb) values of ∼106 M−1. Complex 2 with its photoactive pyrenyl moiety exhibits significant photocleavage of pUC19 DNA in red light via singlet oxygen pathway. Complex 2 also exhibits significant photo-activated cytotoxicity in HeLa cancer cells in visible light giving IC50 value of 11.9 μM, while being non-toxic in dark with an IC50 value of 130.5 μM.  相似文献   

4.
《Mendeleev Communications》2019,29(6):640-642
  1. Download : Download high-res image (95KB)
  2. Download : Download full-size image
  相似文献   

5.
Reaction of 3,5-(CF(3))(2)PzLi with anhydrous RhCl(3) in THF gives [Li(THF)](2)Rh(μ-3,5-(CF(3))(2)Pz)(4) (1) as a rare example of a mononuclear, paramagnetic Rh(II) complex (Pz = pyrazolate).  相似文献   

6.
Two new tris-heteroleptic Ru(ii) complexes with triphenylphosphine (PPh3) coordination, cis-[Ru(phen)2(PPh3)(CH3CN)]2+ (1a, phen = 1,10-phenanthroline) and cis-[Ru(biq)(phen)(PPh3)(CH3CN)]2+ (2a, biq = 2,2′-biquinoline), were synthesized and characterized for photochemotherapeutic applications. Upon absorption of visible light, 1a exchanges a CH3CN ligand for a solvent water molecule. Surprisingly, the steady-state irradiation of 2a followed by electronic absorption and NMR spectroscopies reveals the photosubstitution of the PPh3 ligand. Phosphine photoinduced ligand exchange with visible light from a Ru(ii) polypyridyl complex has not previously been reported, and calculations reveal that it results from a trans-type influence in the excited state. Complexes 1a and 2a are not toxic against the triple negative breast cancer cell line MDA-MB-231 in the dark, but upon irradiation with blue light, the activity of both complexes increases by factors of >4.2 and 5.8, respectively. Experiments with PPh3 alone show that the phototoxicity observed for 2a does not arise from the released phosphine ligand, indicating the role of the photochemically generated ruthenium aqua complex on the biological activity. These complexes represent a new design motif for the selective release of PPh3 and CH3CN for use in photochemotherapy.

New Ru(ii) complexes exhibit selective ligand dissociation driven by an excited state trans-type influence. The complexes are not toxic to triple-negative breast cancer cells in the dark, but induce cell death upon irradiation with visible light.  相似文献   

7.
8.
Summary Synthesis of MHNAMT [3-methyl-4-(2-hydroxy-1 naphthalideneamino)-5-mercapto-1,2,4-triazole] and its IR and NMR spectral data are reported. The high stability of the characteristically coloured chelates with Cu(II), Co(II), Ni(II), Pd(II), Pt(IV) and Rh(III) has been made the basis for their efficient ascending TLC separations on silica gel G layers, when present together. Results of three different solvent systems are included to assess efficient resolution of the chelates.  相似文献   

9.
The binuclear copper(II) complex [Cu)(RSSR)2](1), where RSSR is a dianionic Schiff base derived from 2-(thioethyl)salicylaldimine having a disulfide bond is prepared, structurally characterized by X-ray crystallography and its photo-induced DNA cleavage activity studied. The Schiff base ligand H2RSSR is also structurally characterized. The crystal structure of shows the discrete dimeric nature of the complex with each metal showing square-planar geometry with a CuN2O2 coordination (Cu...Cu, 5.011(1)A). The tetradentate Schiff base RSSR acts as a linker of two copper centers. The sulfur atoms in the disulfide unit do not show any apparent interaction with the metal ion. Complex 1, which is cleavage inactive in the dark in the presence of reducing agents, shows significant cleavage of supercoiled pUC19 DNA on exposure to UV light of 312 nm or visible light of different wavelengths under aerobic conditions, in the absence of any additives. DNA cleavage data from control experiments reveal involvement of the disulfide unit as a photosensitizer undergoing photo-induced S-S bond cleavage on exposure to UV light and the resulting species activates molecular oxygen to form singlet oxygen (1O2) that causes DNA cleavage following a type-II process. Photo-induced DNA cleavage by 1 on red-light exposure using a CW laser of 632.8 nm or a pulsed ruby laser of 694 nm is proposed to involve sulfide radicals in a type-I process and hydroxyl radicals as the reactive species.  相似文献   

10.
A water-soluble Cu (II) complex [(dien)Cu(??-1,6-DAH)Cu(dien) (NO3)2](NO3)2 has been synthesized and its effect on the carrier model DNA structure and cancer cell line proliferation was investigated. In this regard, calf thymus DNA (CT-DNA) and human breast cancer cell line, T47D, were the targets. The effect of the complex on DNA structure was investigated by means of UV/vis, fluorescence and circular dichroism (CD) spectroscopic techniques as well as dynamic light scattering (DLS), zeta potential analysis and docking assay for more analysis. The UV?Cvis absorption spectra of complex with DNA showed a slight red shift and hypochromic effect, which indicated the intercalation and electrostatic effect of complex with CT-DNA. Using ethidium bromide (EB) as a probe in fluorescence studies revealed that complex can quench the EB?CDNA fluorescence emission at different temperatures. Besides, the far UV?CCD studies displayed that the complex induces changes in the secondary structure of CT-DNA and can increase the melting temperature of DNA up to 14?°C. The DLS and zeta potential measurements confirmed the electrostatic interaction of complex with the negatively charged DNA and subsequent DNA condensation. Besides, computational studies reflect that major and minor groove binding are two modes of interaction between complex and DNA. On the other hand, growth inhibition of the complex toward T47D cell line was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, which showed no cytotoxic properties.  相似文献   

11.
The reactions of the ligand 2-(2-pyridyl)benzthiazole (pbt) with CuBr 2 and ZnCl 2 in acetonitrile produce the complexes [Cu(pbt)Br 2] ( 1) and [Zn(pbt)Cl 2] ( 3), respectively. When complex 1 is dissolved in DMF, complex 2 is obtained as light-green crystals. The reaction of pbt with CuBr 2 in DMF also yields the complex [Cu(pbt)Br 2(dmf)] ( 2) (dmf = dimethylformamide). Complexes 1- 3 were characterized by X-ray crystallography. Complexes 1 and 3 have distorted tetrahedral coordination environments, and complex 2 is constituted of two slightly different copper centers, both exhibiting distorted trigonal bipyramidal geometries. Complexes 1 and 2 cleave phiX174 phage DNA, both in the presence and the absence of reductant. The free ligand pbt does not show any DNA-cleaving abilities. The poor solubility of complex 3 makes it not applicable for biological tests. The occurrence of DNA breaks in the presence of various radical scavengers suggests that no diffusible radicals are involved in the DNA cleavage by complex 1, as none of the scavengers inhibit the cleavage reaction. The DNA-cleavage products are not religated with the enzyme T4 DNA ligase, which is an additional proof that the cleavage is nonhydrolytic. Most probably the cleaving reaction involves reactive oxygen species, which could not be trapped, leading to an oxidative mechanism. An easy oxidation of Cu (II)(pbt)Br 2 to Cu (III) in DMF and the reduction of the same to Cu (I), under similar electrochemical conditions may lead to the in situ activation of molecular oxygen, resulting in the formation of metal solvated nondiffusible radicals able to prompt the oxidative cleavage of DNA. Complex 1 and the pure ligand exhibit remarkable cytotoxic effects against the cancer cell lines L1210 and A2780 and also against the corresponding cisplatin-resistant mutants of these cell lines.  相似文献   

12.
The ligand 1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene, 3, was used to synthesize a mononuclear Rh(II) complex [(eta(1):eta(6):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh][PF(6)](2), 6+, in a two-legged piano-stool geometry. The structural and electronic properties of this novel complex including a single-crystal EPR analysis are reported. The complex can be cleanly interconverted with its Rh(I) form, allowing for a comparison of the structural properties and reactivity of both oxidation states. The Rh(I) form 6 reacts with CO, tert-butyl isocyanide, and acetonitrile to form a series of 15-membered mononuclear cyclophanes [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CO)(3)][PF(6)] (8), [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CNC(CH(3))(3))(2)][PF(6)] (10), and [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CO)(CH(3)CN)][PF(6)] (11). The Rh(II) complex 6+ reacts with the same small molecules, but over shorter periods of time, to form the same Rh(I) products. In addition, a model two-legged piano-stool complex [(eta(1):eta(6):eta(1)-1,4-bis[3-(diphenylphosphino)propoxy]-2,3,5,6-tetramethylbenzene)Rh][B(C(6)F(5))(4)], 5, has been synthesized and characterized for comparison purposes. The solid-state structures of complexes 5, 6, 6+, and 11 are reported. Structure data for 5: triclinic; P(-)1; a = 10.1587(7) A; b = 11.5228(8) A; c = 17.2381(12) A; alpha = 96.4379(13) degrees; beta = 91.1870(12) degrees; gamma = 106.1470(13) degrees; Z = 2. 6: triclinic; P(-)1; a = 11.1934(5) A; b = 12.4807(6) A; c = 16.1771(7) A; alpha = 81.935(7) degrees; beta = 89.943(1) degrees; gamma = 78.292(1) degrees; Z = 2. 6+: monoclinic; P2(1)/n; a = 11.9371(18) A; b = 32.401(5) A; c = 12.782(2) A; beta = 102.890(3) degrees; Z = 4. 11: triclinic; P(-)1; a = 13.5476(7) A; b = 13.8306(7) A; c = 14.9948(8) A; alpha = 74.551(1) degrees; beta = 73.895(1) degrees; gamma = 66.046(1) degrees; Z = 2.  相似文献   

13.
The chiral Zn(II) complex [ZnLCl(2)], 1 {L = 4-methyl-2,6-di[(S)-(+)-1-phenylethyliminomethyl] phenol}, self-assembles via C-H...Cl hydrogen bonding into supramolecular helices. Complex 1 exhibits emission in solution at room temperature in the visible range. Crystal data for 1: orthorhombic space group P2(1)2(1)2(1), a = 9.614(2) A, b = 13.825(3) A, c = 18.667(3) A, V = 2481.1(8) A(3), Z = 4.  相似文献   

14.
The synthesis of two organogold(I) complexes, [(Au(NCN))2(dppbp)] (6) and [(Au(Phebox))2(dppbp)] (9), and their application in subsequent transmetalating reactions are described. A trinuclear organogold(I) complex, [(AuCl)3(tdpppb)] (4) is also reported, which exhibits a surprisingly high solubility in dichloromethane. It was found that 6 and 9 can cleanly transfer the anionic NCN-([C(6)H(3)(CH(2)NMe(2))2-2,6]-) or Phebox-([2,6-bis(oxazolinyl)phenyl]-) moiety to Ti(IV) and Pd(II) centers, respectively. The coproduct [(AuCl)2(dppbp)] (3, dppbp is [4-Ph(2)PC(6)H(4)]2 (1)) formed during this transmetalation reaction, precipitates almost quantitatively from the reaction mixture (toluene) and can thus be separated by simple filtration. In comparison, [AuCl(PPh3)], formed as the coproduct in the transmetalation reaction of [Au(NCN)(PPh3)] with metal salts, has a higher solubility in apolar solvents and thus is more difficult to separate from the resultant organometallic complex. Digold complex 6 has been characterized by NMR spectroscopy and crystallographic analyses. These analyses show that the two gold units are essentially independent. The formation of a dimetallic transmetalating agent based on gold(I) had no effect on its transmetalating properties.  相似文献   

15.
A mixed-ligand complex, [Cu(Hptc)(Me2bpy)(H2O)]·3H2O (1) (H3ptc = pyridine-2,4,6-tricarboxylic acid; Me2bpy = 4,4′-dimethyl-2,2′-dipyridine), has been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. In the discrete mononuclear structure of 1, the copper core is in a distorted octahedral environment (CuN3O3) derived from tridentate chelate Hptc2?, bidentate chelate Me2bpy and a coordinated water. The interaction of 1 with CT-DNA was investigated by UV–vis spectra, fluorescence spectra and viscosity, which reveals that 1 binds to CT-DNA by partial intercalation. Gel electrophoresis assay demonstrated that the complex displays efficient oxidative cleavage of supercoiled DNA with H2O2 as an oxidant. The in vitro cytotoxicity of 1 on HeLa cells was assessed by MTT and clonogenic assay, where IC50 equals 4.24 ± 0.03 μM. Fluorescence microscopic observations indicated that 1 can induce apoptosis of HeLa cells.  相似文献   

16.
The features of nanoparticle formation by the radiation-chemical reduction of Cu2+ ions in polyacrylic acid-polyethyleneimine complexes have been studied. It has been shown that the swollen film/aqueous alcohol medium interphase exchange of the reducing species and the specifics of X-ray energy transfer play an important role in the formation of metal particles in the subsurface layer of polymer matrixes. An analysis of EPR and X-ray diffraction data shows that an acetaldehyde admixture increases the Cu2+ reduction rate of and enables the growth of nanoparticles.  相似文献   

17.
A novel crystalline Zn(II) complex of L-carnosine was prepared and evaluated for inhibitory activity against gastric ulceration in rats. The complex was found to be much more active than various other Zn(II) compounds. It was characterized by means of infrared (IR) spectroscopy, solid-state carbon-13 (13C) and nitrogen-15 (15N) 1H-cross-polarization (CP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The spectroscopic data indicated that L-carnosine coordinates to Zn(II) as a quadridentate ligand. A comparison of the 13C-NMR signals of the imidazole carbons of the complex with those of several histidine derivatives revealed that a tautomeric change of imidazole moiety had occurred upon complexation. The binding mode of the complex was considered to be analogous to that of the corresponding Cu(II) complex.  相似文献   

18.
Two new lead(II) complexes containing nitrite, [Pb(L)2(NO2)2], L?=?1,10-phenanthroline (phen) or 2,2′-bipyridine (bpy), have been synthesized and characterized. The crystal structure of [Pb(phen)2(NO2)2] shows monomeric units. The coordination number is eight (four from “phen” ligands and four nitrite anions), weak interaction of lead(II) with oxygen atoms of adjacent molecules produce dimer units in the solid state. The arrangement of ligands exhibits a coordination hole around the lead(II), occupied possibly by a stereoactive lone pair of electrons on lead(II), and the coordination around lead is hemidirected. There is a π–π stacking interaction between the parallel aromatic rings that may help to increase the “gap” around lead(II).  相似文献   

19.
Schnaars C  Hansen T 《Organic letters》2012,14(11):2794-2797
(Halodiazomethyl)phosphonates 2A-C have been generated by a one-pot procedure via a clean, efficient, and rapid deprotonation/electrophilic halogenation sequence from diethyl diazomethylphosphonate 1 (EDP). Subsequent intermolecular Rh(II)-catalyzed cyclopropanation afforded the corresponding halocyclopropylphosphonates 3-10 in moderate to high yields and high diastereomeric ratios. Catalyst loadings down to 0.1 mol % as well as clean and selective product formation were achieved.  相似文献   

20.
The synthesis and structural characterization of a mixed-sandwich (η(5)-C(5)Me(5))Rh(III) complex of the cyclometalated phosphine PMeXyl(2) (Xyl = 2,6-C(6)H(3)Me(2)) with unusual κ(4)-P,C,C',C' coordination (compound 1-BAr(f); BAr(f) = B(3,5-C(6)H(3)(CF(3))(2))(4)) are reported. A reversible κ(4) to κ(2) change in the binding of the chelating phosphine in cation 1(+) induced by dihydrogen and hydrosilanes triggers a highly efficient Si-H/Si-D (or Si-T) exchange applicable to a wide range of hydrosilanes. Catalysis can be carried out in an organic solvent solution or without solvent, with catalyst loadings as low as 0.001 mol %, and the catalyst may be recycled a number of times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号