首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper explores equivalent, reduced size Reformulation-Linearization Technique (RLT)-based formulations for polynomial programming problems. Utilizing a basis partitioning scheme for an embedded linear equality subsystem, we show that a strict subset of RLT defining equalities imply the remaining ones. Applying this result, we derive significantly reduced RLT representations and develop certain coherent associated branching rules that assure convergence to a global optimum, along with static as well as dynamic basis selection strategies to implement the proposed procedure. In addition, we enhance the RLT relaxations with v-semidefinite cuts, which are empirically shown to further improve the relative performance of the reduced RLT method over the usual RLT approach. We present computational results for randomly generated instances to test the different proposed reduction strategies and to demonstrate the improvement in overall computational effort when such reduced RLT mechanisms are employed.  相似文献   

2.
In this paper, we propose two sets of theoretically filtered bound-factor constraints for constructing reformulation-linearization technique (RLT)-based linear programming (LP) relaxations for solving polynomial programming problems. We establish related theoretical results for convergence to a global optimum for these reduced sized relaxations, and provide insights into their relative sizes and tightness. Extensive computational results are provided to demonstrate the relative effectiveness of the proposed theoretical filtering strategies in comparison to the standard RLT and a prior heuristic filtering technique using problems from the literature as well as randomly generated test cases.  相似文献   

3.
In this paper, we propose to enhance Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations for polynomial programming problems by developing cutting plane strategies using concepts derived from semidefinite programming. Given an RLT relaxation, we impose positive semidefiniteness on suitable dyadic variable-product matrices, and correspondingly derive implied semidefinite cuts. In the case of polynomial programs, there are several possible variants for selecting such particular variable-product matrices on which positive semidefiniteness restrictions can be imposed in order to derive implied valid inequalities. This leads to a new class of cutting planes that we call v-semidefinite cuts. We explore various strategies for generating such cuts, and exhibit their relative effectiveness towards tightening the RLT relaxations and solving the underlying polynomial programming problems in conjunction with an RLT-based branch-and-cut scheme, using a test-bed of problems from the literature as well as randomly generated instances. Our results demonstrate that these cutting planes achieve a significant tightening of the lower bound in contrast with using RLT as a stand-alone approach, thereby enabling a more robust algorithm with an appreciable reduction in the overall computational effort, even in comparison with the commercial software BARON and the polynomial programming problem solver GloptiPoly.  相似文献   

4.
We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems we show that the use of SDP and RLT constraints together can produce bounds that are substantially better than either technique used alone. For highly symmetric problems we also consider the effect of symmetry-breaking based on tightened bounds on variables and/or order constraints.  相似文献   

5.
This paper considers the solution of nonconvex polynomial programming problems that arise in various engineering design, network distribution, and location-allocation contexts. These problems generally have nonconvex polynomial objective functions and constraints, involving terms of mixed-sign coefficients (as in signomial geometric programs) that have rational exponents on variables. For such problems, we develop an extension of the Reformulation-Linearization Technique (RLT) to generate linear programming relaxations that are embedded within a branch-and-bound algorithm. Suitable branching or partitioning strategies are designed for which convergence to a global optimal solution is established. The procedure is illustrated using a numerical example, and several possible extensions and algorithmic enhancements are discussed.  相似文献   

6.
In this paper, we propose a mechanism to tighten Reformulation-Linearization Technique (RLT) based relaxations for solving nonconvex programming problems by importing concepts from semidefinite programming (SDP), leading to a new class of semidefinite cutting planes. Given an RLT relaxation, the usual nonnegativity restrictions on the matrix of RLT product variables is replaced by a suitable positive semidefinite constraint. Instead of relying on specific SDP solvers, the positive semidefinite stipulation is re-written to develop a semi-infinite linear programming representation of the problem, and an approach is developed that can be implemented using traditional optimization software. Specifically, the infinite set of constraints is relaxed, and members of this set are generated as needed via a separation routine in polynomial time. In essence, this process yields an RLT relaxation that is augmented with valid inequalities, which are themselves classes of RLT constraints that we call semidefinite cuts. These semidefinite cuts comprise a relaxation of the underlying semidefinite constraint. We illustrate this strategy by applying it to the case of optimizing a nonconvex quadratic objective function over a simplex. The algorithm has been implemented in C++, using CPLEX callable routines, and two types of semidefinite restrictions are explored along with several implementation strategies. Several of the most promising lower bounding strategies have been implemented within a branch-and-bound framework. Computational results indicate that the cutting plane algorithm provides a significant tightening of the lower bound obtained by using RLT alone. Moreover, when used within a branch-and-bound framework, the proposed lower bound significantly reduces the effort required to obtain globally optimal solutions.  相似文献   

7.
The reformulation–linearization technique (RLT), introduced in [Sherali, H. D., Adams. W. P. (1990). A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics 3(3), 411–430], provides a way to compute a hierarchy of linear programming bounds on the optimal values of NP-hard combinatorial optimization problems. In this paper we show that, in the presence of suitable algebraic symmetry in the original problem data, it is sometimes possible to compute level two RLT bounds with additional linear matrix inequality constraints. As an illustration of our methodology, we compute the best-known bounds for certain graph partitioning problems on strongly regular graphs.  相似文献   

8.
This paper is concerned with the development of an algorithm to solve continuous polynomial programming problems for which the objective function and the constraints are specified polynomials. A linear programming relaxation is derived for the problem based on a Reformulation Linearization Technique (RLT), which generates nonlinear (polynomial) implied constraints to be included in the original problem, and subsequently linearizes the resulting problem by defining new variables, one for each distinct polynomial term. This construct is then used to obtain lower bounds in the context of a proposed branch and bound scheme, which is proven to converge to a global optimal solution. A numerical example is presented to illustrate the proposed algorithm.  相似文献   

9.
In this paper we introduce DRL*, a new hierarchy of linear relaxations for 0-1 mixed integer linear programs (MIPs), based on the idea of Reformulation-Linearization, and explore its links with the Lift-and-Project (L&P) hierarchy and the Sherali-Adams (RLT) hierarchy. The relaxations of the new hierarchy are shown to be intermediate in strength between L&P and RLT relaxations, and examples are shown for which it leads to significantly stronger bounds than those obtained from Lift-and-Project relaxations. On the other hand, as opposed to the RLT relaxations, a key advantage of the DRL* relaxations is that they feature a decomposable structure when formulated in extended space, therefore lending themselves to more efficient solution algorithms by properly exploiting decomposition. Links between DRL* and both the L&P and RLT hierarchies are further explored, and those constraints which should be added to the rank d L&P relaxation (resp to the rank d RLT relaxation) to make it coincide with the rank d DRL* relaxation (resp: to the rank d RLT relaxation) are identified. Furthermore, a full characterization of those 0-1 MIPs for which the DRL* and RLT relaxations coincide is obtained. As an application, we show that both the RLT and DRL* relaxations are the same up to rank d for the problem of optimizing a pseudoboolean function of degree d over a polyhedron. We report computational results comparing the strengths of the rank 2 L&P, DRL* and RLT relaxations. Impact on possible improved efficiency in computing some bounds for the quadratic assignment problem and other directions for future research are suggested in the conclusions.  相似文献   

10.
We consider linear mixed-integer programs where a subset of the variables are restricted to take on a finite number of general discrete values. For this class of problems, we develop a reformulation-linearization technique (RLT) to generate a hierarchy of linear programming relaxations that spans the spectrum from the continuous relaxation to the convex hull representation. This process involves a reformulation phase in which suitable products using a defined set of Lagrange interpolating polynomials (LIPs) are constructed, accompanied by the application of an identity that generalizes x(1−x) for the special case of a binary variable x. This is followed by a linearization phase that is based on variable substitutions. The constructs and arguments are distinct from those for the mixed 0-1 RLT, yet they encompass these earlier results. We illustrate the approach through some examples, emphasizing the polyhedral structure afforded by the linearized LIPs. We also consider polynomial mixed-integer programs, exploitation of structure, and conditional-logic enhancements, and provide insight into relationships with a special-structure RLT implementation.  相似文献   

11.
Fast construction of constant bound functions for sparse polynomials   总被引:1,自引:0,他引:1  
A new method for the representation and computation of Bernstein coefficients of multivariate polynomials is presented. It is known that the coefficients of the Bernstein expansion of a given polynomial over a specified box of interest tightly bound the range of the polynomial over the box. The traditional approach requires that all Bernstein coefficients are computed, and their number is often very large for polynomials with moderately-many variables. The new technique detailed represents the coefficients implicitly and uses lazy evaluation so as to render the approach practical for many types of non-trivial sparse polynomials typically encountered in global optimization problems; the computational complexity becomes nearly linear with respect to the number of terms in the polynomial, instead of exponential with respect to the number of variables. These range-enclosing coefficients can be employed in a branch-and-bound framework for solving constrained global optimization problems involving polynomial functions, either as constant bounds used for box selection, or to construct affine underestimating bound functions. If such functions are used to construct relaxations for a global optimization problem, then sub-problems over boxes can be reduced to linear programming problems, which are easier to solve. Some numerical examples are presented and the software used is briefly introduced.  相似文献   

12.
In this paper, we consider a special class of nonconvex programming problems for which the objective function and constraints are defined in terms of general nonconvex factorable functions. We propose a branch-and-bound approach based on linear programming relaxations generated through various approximation schemes that utilize, for example, the Mean-Value Theorem and Chebyshev interpolation polynomials coordinated with a Reformulation-Linearization Technique (RLT). A suitable partitioning process is proposed that induces convergence to a global optimum. The algorithm has been implemented in C++ and some preliminary computational results are reported on a set of fifteen engineering process control and design test problems from various sources in the literature. The results indicate that the proposed procedure generates tight relaxations, even via the initial node linear program itself. Furthermore, for nine of these fifteen problems, the application of a local search method that is initialized at the LP relaxation solution produced the actual global optimum at the initial node of the enumeration tree. Moreover, for two test cases, the global optimum found improves upon the solutions previously reported in the source literature. Received: January 14, 1998 / Accepted: June 7, 1999?Published online December 15, 2000  相似文献   

13.
In this paper, we introduce a Reformulation-Linearization Technique-based open-source optimization software for solving polynomial programming problems (RLT-POS). We present algorithms and mechanisms that form the backbone of RLT-POS, including constraint filtering techniques, reduced RLT representations, and semidefinite cuts. When implemented individually, each model enhancement has been shown in previous papers to significantly improve the performance of the standard RLT procedure. However, the coordination between different model enhancement techniques becomes critical for an improved overall performance since special structures in the original formulation that work in favor of a particular technique might be lost after implementing some other model enhancement. More specifically, we discuss the coordination between (1) constraint elimination via filtering techniques and reduced RLT representations, and (2) semidefinite cuts for sparse problems. We present computational results using instances from the literature as well as randomly generated problems to demonstrate the improvement over a standard RLT implementation and to compare the performances of the software packages BARON, COUENNE, and SparsePOP with RLT-POS.  相似文献   

14.
This paper proposes two new mixed integer programming models for capacitated multi-level lot-sizing problems with backlogging, whose linear programming relaxations provide good lower bounds on the optimal solution value. We show that both of these strong formulations yield the same lower bounds. In addition to these theoretical results, we propose a new, effective optimization framework that achieves high quality solutions in reasonable computational time. Computational results show that the proposed optimization framework is superior to other well-known approaches on several important performance dimensions.  相似文献   

15.
We address a class of particularly hard-to-solve combinatorial optimization problems, namely that of multicommodity network optimization when the link cost functions are discontinuous step increasing. Unlike usual approaches consisting in the development of relaxations for such problems (in an equivalent form of a large scale mixed integer linear programming problem) in order to derive lower bounds, our d.c.(difference of convex functions) approach deals with the original continuous version and provides upper bounds. More precisely we approximate step increasing functions as closely as desired by differences of polyhedral convex functions and then apply DCA (difference of convex function algorithm) to the resulting approximate polyhedral d.c. programs. Preliminary computational experiments are presented on a series of test problems with structures similar to those encountered in telecommunication networks. They show that the d.c. approach and DCA provide feasible multicommodity flows x * such that the relative differences between upper bounds (computed by DCA) and simple lower bounds r:=(f(x*)-LB)/{f(x*)} lies in the range [4.2 %, 16.5 %] with an average of 11.5 %, where f is the cost function of the problem and LB is a lower bound obtained by solving the linearized program (that is built from the original problem by replacing step increasing cost functions with simple affine minorizations). It seems that for the first time so good upper bounds have been obtained.  相似文献   

16.
This paper presents a new relaxation technique to globally optimize mixed-integer polynomial programming problems that arise in many engineering and management contexts. Using a bilinear term as the basic building block, the underlying idea involves the discretization of one of the variables up to a chosen accuracy level (Teles, J.P., Castro, P.M., Matos, H.A. (2013). Multiparametric disaggregation technique for global optimization of polynomial programming problems. J. Glob. Optim. 55, 227–251), by means of a radix-based numeric representation system, coupled with a residual variable to effectively make its domain continuous. Binary variables are added to the formulation to choose the appropriate digit for each position together with new sets of continuous variables and constraints leading to the transformation of the original mixed-integer non-linear problem into a larger one of the mixed-integer linear programming type. The new underestimation approach can be made as tight as desired and is shown capable of providing considerably better lower bounds than a widely used global optimization solver for a specific class of design problems involving bilinear terms.  相似文献   

17.
Feng Guo  Xiaoxia Sun 《Optimization》2017,66(5):657-673
In this paper, we consider a subclass of linear semi-infinite programming problems whose constraint functions are polynomials in parameters and index sets are polyhedra. Based on Handelman’s representation of positive polynomials on a polyhedron, we propose two hierarchies of LP relaxations of the considered problem which respectively provide two sequences of upper and lower bounds of the optimum. These bounds converge to the optimum under some mild assumptions. Sparsity in the LP relaxations is explored for saving computational time and avoiding numerical ill behaviors.  相似文献   

18.
Semidefinite programming (SDP) has recently turned out to be a very powerful tool for approximating some NP-hard problems. The nature of the quadratic assignment problem (QAP) suggests SDP as a way to derive tractable relaxations. We recall some SDP relaxations of QAP and solve them approximately using a dynamic version of the bundle method. The computational results demonstrate the efficiency of the approach. Our bounds are currently among the strongest ones available for QAP. We investigate their potential for branch and bound settings by looking also at the bounds in the first levels of the branching tree.   相似文献   

19.
The zero-one integer programming problem and its special case, the multiconstraint knapsack problem frequently appear as subproblems in many combinatorial optimization problems. We present several methods for computing lower bounds on the optimal solution of the zero-one integer programming problem. They include Lagrangean, surrogate and composite relaxations. New heuristic procedures are suggested for determining good surrogate multipliers. Based on theoretical results and extensive computational testing, it is shown that for zero-one integer problems with few constraints surrogate relaxation is a viable alternative to the commonly used Lagrangean and linear programming relaxations. These results are used in a follow up paper to develop an efficient branch and bound algorithm for solving zero-one integer programming problems.  相似文献   

20.
In this paper we present necessary conditions for global optimality for polynomial problems with box or bivalent constraints using separable polynomial relaxations. We achieve this by first deriving a numerically checkable characterization of global optimality for separable polynomial problems with box as well as bivalent constraints. Our necessary optimality conditions can be numerically checked by solving semi-definite programming problems. Then, by employing separable polynomial under-estimators, we establish sufficient conditions for global optimality for classes of polynomial optimization problems with box or bivalent constraints. We construct underestimators using the sum of squares convex (SOS-convex) polynomials of real algebraic geometry. An important feature of SOS-convexity that is generally not shared by the standard convexity is that whether a polynomial is SOS-convex or not can be checked by solving a semidefinite programming problem. We illustrate the versatility of our optimality conditions by simple numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号