首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new and simple method has been developed to synthesize large quantities of highly monodisperse tetragonal zirconia nanocrystals. In this synthesis, a nonhydrolytic sol-gel reaction between zirconium(IV) isopropoxide and zirconium(IV) chloride at 340 degrees C generated 4 nm sized zirconia nanoparticles. A high-resolution transmission electron microscopic (HRTEM) image showed that the particles have a uniform particle size distribution and that they are highly crystalline. These monodisperse nanoparticles were synthesized without any size selection process. X-ray diffraction studies combined with Rietveld refinement revealed that the ZrO(2) nanocrystals are the high-temperature tetragonal phase, and very close to a cubic phase. When zirconium(IV) bromide is used as a precursor instead of zirconium chloride, zirconia nanoparticles with an average size of 2.9 nm were obtained. The UV-visible absorption spectrum of 4 nm sized zirconia nanoparticles exhibited a strong absorption starting at around 270 nm. A fluorescence spectrum with excitation at 300 nm showed a broad fluorescence band centered around 370 nm. FTIR spectra showed indication of TOPO binding on the ZrO(2) nanoparticle surface. These optical studies also suggest that the nanoparticles are of high quality in terms of narrow particle size distribution and relatively low density of surface trap states.  相似文献   

2.
This article describes the preparation and the physico-chemical characterization of a new host-guest system consisting of zeolite beta nanoparticles as host and mitoxantrone as guest. The resulting host-guest system mitoxantrone@beta is characterized in terms of morphology (transmission electron microscopy, dynamic light scattering), structure (powder wide-angle X-ray diffraction, nitrogen sorption), surface charge (ξ-potential measurements), and optical properties (UV-visible absorption, steady-state fluorescence). Mitoxantrone@beta particles are monodisperse in size with a mean diameter centered around 100 nm. Mitoxantrone guest molecules are adsorbed at the micropore entrances of zeolite host. Resulting nanoparticles retrieve the interesting optical properties of guest molecules with a fluorescence emission band in the near-infrared region. Mitoxantrone loading is comparatively evaluated by three different means (elemental analysis, direct and indirect UV-visible absorption studies) showing a loading level of 6.8 μmol/g. Mitoxantrone@beta nanoparticles also show a noticeable cytotoxic effect when applied to cancer cells.  相似文献   

3.
We report on the impregnation of THF solutions of the low-valent heterometallic cluster NEt(4)[Co(3)Ru(CO)(12)] into two mesoporous silica matrices, amorphous xerogels and ordered MCM-41, and a study of its thermal decomposition into metallic nanoparticles by X-ray diffraction, transmission electron microscopy and in situ magnetic measurements under controlled atmospheres. The decomposition of the cluster was monitored as a function of temperature by examining the chemical composition of the particles, their size distributions and their structures as well as their magnetic properties. Treatment under inert atmosphere (i.e. argon) at temperatures below 200 degrees C resulted in the formation of segregated spherical particles of hcp-ruthenium (2.3 +/- 1.0 nm) and hcp-cobalt (3.1 +/- 0.9 nm). The latter is transformed to fcc-cobalt (3.2 +/- 1.0 nm) above 270 degrees C. At higher temperatures, Co-Ru alloying takes place and the Ru content of the particles increases with increasing temperature to reach the nominal composition of the molecular precursor, Co(3)Ru. The particles are more evenly distributed in the MCM-41 framework compared to the disordered xerogel and also show a narrower size distribution. Owing to the different magnetic anisotropy of hcp- and fcc-cobalt, which results in different blocking temperatures, we were able to clearly identify the products formed at the early stages of the thermal decomposition procedure.  相似文献   

4.
We present a novel method for the preparation of ultrasmall Au/CdSe core/shell particles. Au-Cd bialloy particles of 4.7 nm diameter were prepared as the precursor. The Cd component in the precursor reacted with the Se source at a temperature of 205 degrees C and was heated to 250 degrees C, leading to formation of a Au/CdSe core/shell structure. The sizes of Au/CdSe nanoparticles have a narrow distribution with an average size of 6.0 nm and Au core of 2.2 nm diameter. The X-ray diffraction pattern and the images of the high-resolution electron transmission microscopy show that the Au cores and the CdSe shells of Au/CdSe core/shell nanoparticles are both well crystallized, and the CdSe shells are in a cubic phase. The absorption spectrum of the Au/CdSe nanoparticles combines the absorption behaviors of the Au cores and the CdSe shells.  相似文献   

5.
Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.  相似文献   

6.
The synthesis of zinc sulfide (ZnS) quantum dots (QDs) by microwave heating in a water-ethanol medium is proposed. The effect of the synthesis temperature (80 °C, 100 °C, 120 °C, and 150 °C) on the QD characteristics is examined. Based on the analysis of X-ray diffraction profiles the conclusion is drawn that the hexagonal ZnS phase of wurtzite type with an average nanocrystal size of 2.6-3.7 nm forms in the synthesized QDs. The nanocrystallite size is found to increase with the QD synthesis heating temperature. The analysis of X-ray absorption spectra (XANES) at the zinc K-edge indicates a higher crystallinity of the QD samples prepared at higher synthesis temperatures. The combined analysis of X-ray diffraction profiles, optical diffuse reflectance spectra, and X-ray absorption spectra implies the following possible QD structure: the pure hexagonal ZnS phase of wurtzite type in the bulk of nanoparticles and the amorphous ZnO phase in the surface layer of nanoparticles.  相似文献   

7.
Concurrent sonolysis of iron pentacarbonyl and poly(ethylene glycol)-400 (PEG-400) in hexadecane solvent proceeds via zero-order kinetics and results in Fe nanoparticles encapsulated in PEG-400 (Fe-PEG). The transmission electron microscopy images show Fe-PEG consisting of <3 nm Fe particles that are evenly dispersed in the PEG matrix. M?ssbauer and X-ray absorption fine structure/X-ray absorption near-edge structure data reveal an ordered PEG assembly that helps protect the zerovalent Fe core. The Fe nanoparticles in Fe-PEG are superparamagnetic with a magnetization value of 45 emu/g-Fe at 10 KOe. The rheology of the synthesized material shows an unusual increase in viscosity with temperature that is likely due to lower critical saturation temperature phase segregation over 40 degrees C. The low-temperature mobility of the PEG-400 moiety in Fe-PEG would allow facile ligation of the Fe0 core with biologically and chemically active groups.  相似文献   

8.
A high-temperature and high-pressure flow-reactor system was applied to the synthesis of monometallic ruthenium (Ru) nanoparticles and platinum/ruthenium (Pt/Ru) bimetallic nanoparticles using the thermal reduction of ruthenium ion (Ru(III)) and the mixture of platinum (Pt(IV)) and ruthenium ions in water and ethanol mixture in the presence of poly(N-vinyl-2-pyrrolidone). Monometallic Ru nanoparticles with an average diameter of ca. 2 nm were synthesized above 200 degrees C at 30 MPa. The monometallic Ru nanoparticles tended to make large aggregates in colloidal dispersions. By the reduction of the mixture solution of Pt(IV) and Ru(III) in water and ethanol above 200 degrees C at 30 MPa, Pt/Ru bimetallic nanoparticles with an average diameter of ca. 2.5 nm were synthesized with relatively small size distribution. The EXAFS spectra for the Pt/Ru bimetallic particles indicated that the particle possesses metallic bonds between Pt and Ru atoms in contrast to the case of the nanoparticles produced by thermal reduction under ambient pressure at 100 degrees C [M. Harada, N. Toshima, K. Yoshida, S. Isoda, J. Colloid Interface Sci. 283 (2005) 64], and that the Pt/Ru bimetallic particle has a Pt-core/Ru-shell structure.  相似文献   

9.
PtSn bimetallic nanoparticles with different particle sizes (1-9 nm), metal compositions (Sn content of 10-80 mol %), and organic capping agents (e.g., amine, thiol, carboxylic acid and polymer) were synthesized by colloidal chemistry methods. Transmission electron microscopy (TEM) measurements show that, depending on the particle size, the as-prepared bimetallic nanocrystals have quasi-spherical or faceted shapes. Energy-dispersive X-ray (EDX) analyses indicate that for all samples the signals of both Pt and Sn can be detected from single nanoparticles, confirming that the products are actually bimetallic but not only a physical mixture of pure Pt and Sn metal nanoparticles. X-ray diffraction (XRD) measurements were also conducted on the bimetallic particle systems. When compared with the diffraction patterns of monometallic Pt nanoparticles, the bimetallic samples show distinct shifts of the Bragg reflections to lower degrees, which gives clear proof of the alloying of Pt with Sn. However, a quantitative analysis of the lattice parameter shifts indicates that only part of the Sn atoms are incorporated into the alloy nanocrystals. This is consistent with X-ray photoelectron spectroscopy (XPS) measurements that reveal the segregation of Sn at the surfaces of the nanocrystals. Moreover, short PtSn bimetallic nanowires were synthesized by a seed-mediated growth method with amine-capped bimetallic particles as precursors. The resulting nanowires have an average width of 2.3 nm and lengths ranging from 5 to 20 nm.  相似文献   

10.
We have prepared carbon aerogels (CAs) doped with cobalt or nickel through sol-gel polymerization of formaldehyde with the potassium salt of 2,4-dihydroxybenzoic acid, followed by ion exchange with M(NO3)2 (where M = Co2+ or Ni2+), supercritical drying with liquid CO2, and carbonization at temperatures between 400 and 1050 degrees C under a N2 atmosphere. The nanostructures of these metal-doped carbon aerogels were characterized by elemental analysis, nitrogen adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Metallic nickel and cobalt nanoparticles are generated during the carbonization process at about 400 and 450 degrees C, respectively, forming nanoparticles that are approximately 4 nm in diameter. The sizes and size dispersion of the metal particles increase with increasing carbonization temperatures for both materials. The carbon frameworks of the Ni- and Co-doped aerogels carbonized below 600 degrees C mainly consist of interconnected carbon particles with a size of 15-30 nm. When the samples are pyrolyzed at 1050 degrees C, the growth of graphitic nanoribbons with different curvatures is observed in the Ni- and Co-doped carbon aerogel materials. The distance of graphite layers in the nanoribbons is approximately 0.38 nm. These metal-doped CAs retain the overall open cell structure of metal-free CAs, exhibiting high surface areas and pore diameters in the micro- and mesoporic region.  相似文献   

11.
In view of the recent finding that the bimetallic AuPt nanoparticles prepared by molecular-capping-based colloidal synthesis and subsequent assembly on carbon black support and thermal activation treatment exhibit alloy properties, which is in sharp contrast to the bimetallic miscibility gap known for the bulk counterparts in a wide composition range, there is a clear need to assess the electrocatalytic properties of the catalysts prepared with different bimetallic composition and different thermal treatment temperatures. This paper reports recent results of such an investigation of the electrocatalytic methanol oxidation reaction (MOR) activities of the carbon-supported AuPt nanoparticle catalysts with different bimetallic composition and thermal treatment temperatures. Au(m)Pt(100)(-)(m) nanoparticles of 2-3 nm core sizes with different atomic compositions ranging from 10% to 90% Au (m = 10 approximately 90) have been synthesized by controlling the feeding of the metal precursors used in the synthesis. The electrocatalytic MOR activities of the carbon-supported AuPt bimetallic catalysts were characterized in alkaline electrolytes. The catalysts with 65% to 85% Au and treated at 500 degrees C were found to exhibit maximum electrocatalytic activities in the alkaline electrolytes. The findings, together with a comparison with some well-documented catalysts as well as recent experimental and theoretical modeling results, have revealed important insights into the participation of CO(ad) and OH(ad) on Au sites in the catalytic reaction of Pt in the AuPt alloys with approximately 75% Au. The insights are useful for understanding the correlation of the bifunctional electrocatalytic activity of the bimetallic nanoparticle catalysts with the bimetallic composition and the thermal treatment temperatures.  相似文献   

12.
In-situ synchrotron X-ray diffraction (XRD) was used to monitor the thermal decomposition (thermolysis) of Cd thiolates precursors embedded in a polymer matrix and the nucleation of CdS nanoparticles. A thiolate precursor/polymer solid foil was heated to 300 degrees C in the X-ray diffraction setup of beamline W1.1 at Hasylab, and the diffraction curves were each recorded at 10 degrees C. At temperatures above 240 degrees C, the precursor decomposition is complete and CdS nanoparticles grow within the polymer matrix forming a nanocomposite with interesting optical properties. The nanoparticle structural properties (size and crystal structure) depend on the annealing temperature. Transmission electron microscopy (TEM) and photoluminescence (PL) analyses were used to characterize the nanoparticles. A possible mechanism driving the structural transformation of the precursor is inferred from the diffraction features arising at the different temperatures.  相似文献   

13.
Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles   总被引:2,自引:0,他引:2  
The microwave-assisted polyol reduction method was applied to the synthesis of core-shell gold/palladium bimetallic nanoparticles by the simultaneous reduction of the AuIII and PdII ions. The thickness of the palladium shell was calculated to be approximately 3 nm, and the gold core diameter is 9 nm. The structure and composition of the bimetallic particles were characterized by high-resolution transmission electron microscopy equipped with a nanoarea energy-dispersive X-ray spectroscopy attachment, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy.  相似文献   

14.
A micelle-based method to synthesize dispersed polyaniline (PANI)-Au composite particles by direct oxidation of aniline using AuCl4- as the oxidant is presented. The obtained composite particles have a core-shell structure, where Au nanoparticles of 20 nm mean diameter are encapsulated by PANI of well-defined tetrahedron shape with 150 nm average edge length. The polaron band of the dispersed PANI-Au composite particles is centered at 745 nm and is rather narrow compared to the broad 835 nm absorption of PANI synthesized by the IUPAC procedure. The surface plasmon absorption of Au nanoparticles normally centered at around 520 nm is absent in the composite particles with oxidized PANI. Our results point to a strong electronic interaction between the encapsulated Au nanoparticles and the shell of oxidized PANI. Films and pellets produced from these composite particles show a twofold higher conductivity than IUPAC PANI.  相似文献   

15.
Yu H  Liu Y  Brock SL 《Inorganic chemistry》2008,47(5):1428-1434
MoS2 nanoparticles of size <5 nm have been synthesized via the reaction of Mo(CO)6 with elemental sulfur in trioctylphosphine oxide and 1-octadecene at temperatures from 270 to 330 degrees C. The MoS2 nanoparticles are discrete and dispersible in a variety of nonpolar organic solvents, including toluene, chloroform, and pyridine. The size of the particles can be effectively tuned by varying the temperature, yielding nearly monodisperse samples (<10% standard deviation) as evidenced by transmission electron microscopy (TEM). Additionally, larger (20-50 nm) onion- and tube-shaped MoS2 nanoparticles can be obtained by decreasing the amount of the coordinating solvent (trioctylphosphine oxide) relative to 1-octadecene. As-prepared samples are poorly crystalline, showing only weak contrast in the TEM and an absence of the first-order (00 l) reflection in powder X-ray diffraction that is indicative of regular MoS2 stacking. Samples heated in situ in the TEM are observed to develop contrast and lattice fringes as the temperature is raised to 550 degrees C. Ex-situ heated samples show the appearance of the first order (00l) reflection at temperatures >870 degrees C.  相似文献   

16.
Metal-carbon nanocomposites based on nickel, palladium, and iron and bimetallic palladium-nickel-carbon nanocomposites were for the first time used as catalysts of hydrodechlorination of chlorobenzene in the vapor phase in the atmosphere of hydrogen. Nickel and Pd-Ni nanoparticles completely coated by a carbon layer not only were stable to oxidation and agglomeration but also exhibited considerable activity in hydrodechlorination of chlorobenzene at temperatures much lower than those at which dechlorination on carbon carriers occurred. The dependence of catalytic properties (activity, selectivity, and stability) on temperature and nanocomposite composition was studied. Depending on the nature of the metal, the composition of bimetallic particles and temperature the selectivity could be changed, and the reaction could be directed toward the formation of benzene or cyclohexane. Carbon coating was stable under reaction conditions at least up to 350°C and did not hinder hydrodechlorination. Substrate adsorption likely occurred on the outside carbon surface of composite particles. The activity and structure of Ni@C composite remained almost unchanged after triple cycling over the temperature range from 50 to 350°C in a flow system.  相似文献   

17.
CdSe nanoparticles have been successfully synthesized using a novel microemulsion method at moderate temperature. It is found that with a combination of the surfactant AOT and hydrazine hydrate, it is possible to control the morphology of the nanoparticles. The hydrazine hydrate acts as both a reducing agent and a templating agent that favors the formation of a rodlike structure. The composition, morphology and optical properties of the CdSe nanoparticles were investigated using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) spectroscopy, energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared (FT-IR) spectroscopy. The nucleation and growth mechanism for this system is also proposed based on a time-dependent study. This synthesis route provides a moderate temperature (100 degrees C) method for synthesizing rodlike CdSe, hence reducing the possibility of oxidation of this chalcogenide compound.  相似文献   

18.
The time evolution of silica nanoparticles in solutions of tetrapropylammonium (TPA) has been studied using a combination of small-angle scattering, conductivity, and pH measurements to provide the first comprehensive analysis of nanoparticle structural and compositional changes at elevated temperatures. We have found that silica-TPA nanoparticles subjected to hydrothermal treatment (70-90 degrees C) grow via an Ostwald ripening mechanism with growth rates that depend on both pH and temperature. Small-angle X-ray (SAXS) and neutron (SANS) scattering confirm that the core-shell structure of the particles, initially present at room temperature, is maintained during heating, but an evolution toward sphericity is evidenced especially at high values of pH. SAXS absolute intensity calculations were utilized to calculate the changes in nanoparticle composition and concentration over time. These changes along with the conductivity and pH measurements and SANS contrast matching studies indicate that, upon heating, TPA becomes embedded in the core of nanoparticles giving rise to more zeolitic-looking nanomaterials.  相似文献   

19.
陈霞  翟翠萍 《化学研究》2014,(1):20-23,32
以氯金酸为前驱体,十二烷基硫醇和硼氢化钠分别作为稳定剂和还原剂,采用相转移法制备了单分散的金纳米粒子.将金纳米粒子通过乳液聚合的方法制备了纳米金/聚苯乙烯复合粒子.通过紫外-可见吸收光谱(UV-Vis)研究了纳米金和纳米金/聚苯乙烯复合粒子的光吸收特性,使用傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)、透射电子显微镜(TEM)和动态光散射(DLS)对产物的组成、晶体结构、形貌、以及粒径进行了表征.结果表明,复合粒子为粒径分布较窄的球形,其中的金纳米粒子为面心立方结构.热失重分析(TGA)说明制备的纳米金/聚苯乙烯复合粒子具有很好的热稳定性.  相似文献   

20.
In this paper a convenient route for synthesizing Au(core)-Pd(shell) bimetallic nanoparticles in toluene has been reported as a result of co-reduction of gold(III) and palladium(II) precursors in toluene. N,N-Dimethyldodecylamine was used as a capping agent for the core-shell particles, which not only imparts stability to the organosol but also controls morphology of the evolved particles. The particles were characterized using UV-visible, transmission electron microscopy, and X-ray diffraction measurements. All results substantiate the formation of core-shell structure of the synthesized particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号