首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several segmented polyethylene oxides (SPEOs) were prepared by a melt-transetherification process using 1,4-bis(methoxymethyl)-2,3,5,6-tetramethylbenzene and polyethylene glycols (PEGs) of different molecular weights (di-, tri-, and tetraethylene glycols and PEGs of molecular weights 300, 600, 1000, 1500, and 3400) as the monomers. The effect of polymerization temperature (185 and 150 °C) on the molecular weight of SPEOs was studied, and it was shown that the molecular weight is larger at a higher polymerization temperature. The reversal of the polycondensation (transetherification) equilibrium by treatment of the polyethers with excess methanol transformed them completely into the starting monomers. The analysis of the degraded products by mass and NMR spectroscopies revealed that side reactions, such as the self-condensation of diols, are insignificant. The polymers containing shorter PEG spacers are amorphous, whereas the ones with longer PEG spacers are semicrystalline. The glass-transition temperature (Tg) of the SPEOs decreased with increases in the spacer length and attained the value of PEO at PEG-600, whereas the melting transition (Tm), crystallization temperature (Tc), and their enthalpies of transition, (ΔHm) and (ΔHc), increased with increases in the spacer length. The introduction of “molecular kinks” into SPEOs by the use of another monomer, 1,3-bis(methoxymethyl)-2,4,5,6-tetramethylbenzene, surprisingly, showed little effect on their thermal properties. A “branched-PEO” analogue, containing pendant oligoethyleneoxy units, was also prepared, and its thermal properties were compared with its linear analogue. Preliminary ionic conductance measurements showed that some of these SPEOs could serve as potential candidates for solid polymer–electrolyte applications. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1615–1628, 2001  相似文献   

2.
Magnetorheological (MR) materials are a group of smart materials which have the controllable magnetic properties with an external magnetic field. Magnetic foams, a specific type of MR solids, were synthesized from flexible polyurethane (PU) foams and carbonyl iron particles. Effects of the carbonyl iron particles on the thermal stability of the magnetic foams have been studied. Thermogravimetric analysis (TGA) was applied to characterize the thermal degradation process of the magnetic foams and then the apparent activation energy of degradation was calculated by using Ozawa's method [Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 1965; 38: 1881-1886.]. The carbonyl iron particles were found to improve the thermal stability of magnetic foams in nitrogen by showing higher 10 wt% loss temperature, slower weight loss rate and higher apparent activation energy than pure PU foams. But the magnetic foams were observed to have slightly worse thermal stability in air than pure PU foams at the earlier degradation stage. At the later degradation stage, the magnetic foams exhibited the higher activation energy than pure PU foams in air.  相似文献   

3.
Polyurethane (PU) foams are indisputably daily essential materials found in many applications, notably for comfort (for example, matrasses) or energy saving (for example, thermal insulation). Today, greener routes for their production are intensively searched for to avoid the use of toxic isocyanates. An easily scalable process for the simple construction of self-blown isocyanate-free PU foams by exploiting the organocatalyzed chemo- and regioselective additions of amines and thiols to easily accessible cyclic carbonates is described. These reactions are first validated on model compounds and rationalized by DFT calculations. Various foams are then prepared and characterized in terms of morphology and mechanical properties, and the scope of the process is illustrated by modulating the composition of the reactive formulation. With impressive diversity and accessibility of the main components of the formulations, this new robust and solvent-free process could open avenues for construction of more sustainable PU foams, and offers the first realistic alternative to the traditional isocyanate route.  相似文献   

4.
Polyurethane (PU) foams are indisputably daily essential materials found in many applications, notably for comfort (for example, matrasses) or energy saving (for example, thermal insulation). Today, greener routes for their production are intensively searched for to avoid the use of toxic isocyanates. An easily scalable process for the simple construction of self‐blown isocyanate‐free PU foams by exploiting the organocatalyzed chemo‐ and regioselective additions of amines and thiols to easily accessible cyclic carbonates is described. These reactions are first validated on model compounds and rationalized by DFT calculations. Various foams are then prepared and characterized in terms of morphology and mechanical properties, and the scope of the process is illustrated by modulating the composition of the reactive formulation. With impressive diversity and accessibility of the main components of the formulations, this new robust and solvent‐free process could open avenues for construction of more sustainable PU foams, and offers the first realistic alternative to the traditional isocyanate route.  相似文献   

5.

Solar PV panel cooling is essential to achieve maximum efficiency of PV modules. Phase-change material (PCM) is one of the prominent options to cool the panel and reduce the temperature, since PCMs have low thermal conductivity. Expanded graphite particles are used to enrich the structure and stability as well as to increase the thermal properties. In the present research work, polyethylene glycol (PEG) 1000 is used as a base material and expanded graphite for inclusive particle. A novel form-stable PEG1000/EG composite PCM mixture is prepared, using impregnation and dispersion method. Expanded graphite and PEG1000/EG sample phase compositions are investigated, using X-ray diffraction technique. No new peak is identified in the composite PCM sample. The surface morphology and structure of EG and PEG1000/EG are investigated, using scanning electron microscopy (SEM). Chemical stability analysis is done by Fourier-transform infrared spectroscopy. Thermal properties of the prepared composite PCMs are analysed by differential scanning calorimetry, thermogravimetric analysis (TGA) and KD2 pro analyser. Results show that addition of EG in various propositions (5%, 10% and 15%) enhances the thermal conductivity of PCM samples from 0.3654 to 1.7866 W mK?1, while melting point and latent heat of fusion of PCM samples are getting reduced. TGA thermographs are used to investigate the thermal stability of the composite PCM samples. TGA curves show that loss of mass happens above the operating temperature, and it is varied with different mass ratios of EG. Characterization of the prepared composite PCM samples is compared and found that PEG1000-85%/EG-15% is the best form-stable PCM, suitable for cooling the solar PV panel as well as to improve the electrical efficiency coupled with a decrease of temperature in the range of 35 °C to 40 °C.

  相似文献   

6.
This study was focused on evaluating the suitability of a wide range of lignins, a natural polymer isolated from different plant sources and chemical extractions, in replacing 20 wt.% of petroleum-based polyol in the formulation of PU flexible foams. The main goal was to investigate the effect of unmodified lignin incorporation on the foam’s structural, mechanical, and thermal properties. The hydroxyl contents of the commercial lignins were measured using phosphorus nuclear magnetic resonance (31P NMR) spectroscopy, molar mass distributions with gel permeation chromatography (GPC), and thermal properties with differential scanning calorimetry (DSC) techniques. The results showed that incorporating 20 wt.% lignin increased tensile, compression, tear propagation strengths, thermal stability, and the support factor of the developed PU flexible foams. Additionally, statistical analysis of the results showed that foam properties such as density and compression force deflection were positively correlated with lignin’s total hydroxyl content. Studying correlations between lignin properties and the performance of the developed lignin-based PU foams showed that lignins with low hydroxyl content, high flexibility (low Tg), and high solubility in the co-polyol are better candidates for partially substituting petroleum-based polyols in the formulation of flexible PU foams intended for the automotive applications.  相似文献   

7.
Model investigations with two-, three- and four-component mixtures of poly(ethylene glycols) (PEG) having different molecular weights (1500–20 000) are described. Three different types of mixture can be distinguished. The first group comprises mixtures of components which have very similar properties and behave additively; such mixtures give only one peak, the height of wich depends linearly on the total concentration of PEG. Examples are mixtures of PEG 9000 with PEG 20 000, and PEG 6000 with PEG 9000 or PEG 20 000. The second group consits of mixtures of components with rather different properties; in such cases, a suitable choice of preconcentration potential enables one component to be determined with adequate precision, even in the presence a 100-fold amount of another component. Examples are mixtures of PEG 4000, PEG 9000 or PEG 20 000 with a 100-fold amount of PEG 1500, and multicomponent mixtures consisting of PEGs 6000, 9000 and 20 000 with PEG 1500 in excess; in the latter case, the three PEGs of higher-molecular-weight behave as a single component. The third group comprises mixtures of components which have similar properties, but which behave nonadditively; their properties are too similar for any component to be eliminated by choosing a suitable preconcentration potential, and two very close peaks of dubious usefulness are obtained. Mixtures of PEG 4000, 6000, 9000 and 20 000, or of PEG 4000, 9000 and 20 000 behave in this way.  相似文献   

8.
Polyethylene glycols (PEGs) are non-ionic, water-soluble synthetic polymers which have been widely used for many applications. Since they are of very low toxicity and are readily excreted in urine, PEGs in the molecular weight range 400-6000 have been used extensively in the study of intestinal physiology in man. A high-performance liquid chromatographic (HPLC) method has been developed for the determination of PEG 600 in human urine, which includes a pre-column derivatisation step. The dibenzoate derivatives of PEG 600 can be quantitatively prepared, and this, coupled with ultraviolet detection at 230 nm, has greatly improved the limit of detection for the determination of PEGs by HPLC. A suitable extraction procedure has also been developed which enabled PEG levels in urine to be monitored with much greater sensitivity than any previously reported method.  相似文献   

9.
A normal-phase HPLC system using an amino column has been developed to characterise oligomers of poly(ethylene glycol)s (PEGs) of average Mr 400 to 2000 with derivatisation by dinitrobenzoate. Normal-phase HPLC with gradient elution using ternary solvents of hexane, dichloromethane and methanol has produced a baseline resolution for oligomers of PEG 400, 600 and 1000, while PEG 1000 and 2000 were analysed by using binary solvents of acetonitrile and water. Mixtures of PEGs have been determined by these HPLC systems. PEG 400 in a textile finish has also been determined with satisfactory recovery. It has been found that the hydroxyl group of solvents in normal-phase HPLC plays an important role in resolution and retention of PEG oligomers. Derivatisation efficiency for PEGs by dinitrobenzoyl chloride and quantitative determination of derivatised PEGs by HPLC have been studied. A reversed-phase (RP) mode of HPLC was examined for determination of PEG 400 oligomers. The normal-phase system provided greater resolution for oligomers of PEGs.  相似文献   

10.
Polyurethane (PU) composite foams were successfully reinforced with different concentrations (1 wt%, 2 wt%, 5 wt%) of nutmeg filler. The effect of nutmeg filler concentration on mechanical, thermal, antimicrobial and anti-aging properties of PU composite foams was investigated. PU foams were examined by rheological behavior, processing parameters, cellular structure (Scanning Electron Microscopy analysis), mechanical properties (compression test, impact test, three-point bending test, impact strength), thermal properties (Thermogravimetric Analysis), viscoelastic behavior (Dynamic Mechanical Analysis) as well as selected application properties (thermal conductivity, flammability, apparent density, dimensional stability, surface hydrophobicity, water absorption, color characteristic). In order to Disc Diffusion Method, all PU composites were tested against selected bacteria (Escherichia coli and Staphylococcus aureus). Based on the results, it can be concluded that the addition of 1 wt% of nutmeg filler leads to PU composite foams with improved compression strength (e.g. improvement by ~19%), higher flexural strength (e.g. increase of ~11%), improved impact strength (e.g. increase of ~32%) and comparable thermal conductivity (0.023–0.034 W m−1 K−1). Moreover, the incorporation of nutmeg filler has a positive effect on the fire resistance of PU materials. For example, the results from the cone calorimeter test showed that the incorporation of 5 wt% of nutmeg filler significantly reduced the peak of heat release rate (pHRR) by ca. 60% compared with that of unmodified PU foam. It has been also proved that nutmeg filler may act as a natural anti-aging compound of PU foams. The incorporation of nutmeg filler in each amount successfully improved the stabilization of PU composite foams. Based on the antibacterial results, it has been shown that the addition of nutmeg filler significantly improved the antibacterial properties of PU composite foams against both Gram-positive and Gram-negative bacteria.  相似文献   

11.
Rigid polyurethane (PU) foams having saccharide and castor oil structures in the molecular chain were prepared by reaction between reactive alcoholic hydroxyl group and isocyanate. The apparent density of PU foams was in a range from 0.05 to 0.15 g cm?3. Thermal properties of the above polyurethane foams were studied by differential scanning calorimetry, thermogravimetry and thermal conductivity measurement. Glass transitions were observed in two steps. The low-temperature side glass transition was observed at around 220 K, regardless of castor oil content. This transition is attributed to the molecular motion of alkyl chain groups of castor oil. The high-temperature side glass transition observed in the temperature range from 350 to 390 K depends on the amount of molasses polyol content. The high-temperature side glass transition is attributed to the molecular motion of saccharides, such as sucrose, glucose, fructose as well as isocyanate phenyl rings, which act as rigid components. Thermal decomposition was observed in two steps at 570 and 620–670 K. Thermal conductivity was observed at around 0.032 J sec?1 m?1 K?1. Compression strength and modulus of PU foams were obtained by mechanical test. It was confirmed that the thermal and mechanical properties of PU foams could be controlled by changing the mixing ratio of castor oil and molasses for suitable practical applications.  相似文献   

12.
In the study walnut shells (WS) and silanized walnut shells (S_WS) were used as cellulosic fillers for novel polyurethane (PU) composite foams. The impact of 1, 2 and 5 wt% of WS and S_WS on the foaming parameters, mechanical and thermo-mechanical properties of obtained materials were evaluated. The results have shown that compared to untreated WS filler, the application of S_WS leads to PU foams with more regular structure and improved physico-mechanical behavior of PU materials. For example, compared to controlled WS_0 foam, PU foams enhanced with 1 wt% of the S_WS exhibited better mechanical properties, such as higher compressive strength (~15% of improvement), better impact strength (~6% of improvement), and improved tensile strength (~9% of improvement). The addition of S_WS improved the thermomechanical stability of PU foams. This work provides a better understanding of a relationship between the surface modification of the walnut shell filler and the mechanical, insulating and thermal properties of the PU composites. Due to these positive and beneficial effects, it can be stated that the use of WS and S_WS as natural fillers in PU composite foams can promote a new application path in converting agricultural waste into useful resources for creating a new class of green materials.  相似文献   

13.
A composite consisting of carbon nanotubes and zinc aluminum‐layered double hydroxide (CNT/ZnAl‐LDH) with good solubility in liquid media was synthesized by a co‐precipitation method. The structural characterization and morphological observation demonstrated that the composite displayed a heterostructure with CNTs embedded in ZnAl‐LDH nanosheets. The influence of CNT/ZnAl‐LDH on the thermal stability and flammability performance of flexible polyurethane (PU) foams was characterized. It was established that CNT/ZnAl‐LDH could improve the thermal stability while reduce the peak heat release rate as well as the total smoke release of PU foams. The formation of a protective char with increased mechanical properties and high graphitization degree was mostly postulated for the improved flame retardancy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In the paper, a new biodegradable polyurethane(PU, PU-I) was prepared: the prepolymer was synthesized via bulk ring-opening polymerization with poly(ethylene glycol)(M_n= 600)(PEG600) as an initiator and L-lactide(L-LA), e-caprolactone(CL) as monomers, and the prepolymer was chain-extended with an isocyanate-terminated urethane triblock(macrodiisocyanate) to prepare the PU. The macrodiisocyanate, prepolymer and PUs were characterized by~1H NMR,~(13)C NMR, FT-IR, high resolution mass spectrometry(HR-MS), gel permeation chromatography(GPC), thermo gravimetric analysis(TGA),and differential scanning calorimetry(DSC). The corresponding PU films showed excellent mechanical properties with a tensile strength of 27.5 MPa and an elongation at break of 996%, and also maintained mechanical properties in physiological saline at 37℃ for more than three weeks, which appeared to be more suitable for biomedical applications.  相似文献   

15.
l-leucine anhydride cyclodipeptide (LAC) was prepared through a green method under microwave irradiation with good yield. Then a new class of hydrolysable poly(ether-urethane-urea)s (PEUUs) was synthesized via two-step polymerization method. In the first step, 4,4′-methylene-bis-(4-phenylisocyanate) (MDI) was reacted with LAC to produce isocyanate-terminated poly(imide-urea) oligomers (hard segment). Reaction of the resulting pre-polymer with different molecular weights (MW) of polyethyleneglycols (PEG)s such as PEG-400, PEG-600, PEG-1000 and PEG-2000 was the second step to furnish a series of new PEUUs. The resulting multiblock copolymers have inherent viscosities in the range of 0.4-1.8 dL/g. These multiblock copolymers are hydrolysable, thermally stable and soluble in amide-type solvents. Polymers containing different molecular weights of PEGs soft segments show different thermal stability, phase separation, hard segment cohesiveness and hydrolysis rate. Some structural characterization and physical properties of these PEUUs are reported.  相似文献   

16.
Huang S  Lin B  Qin J 《Electrophoresis》2011,32(23):3364-3370
We present a microfluidic droplet method to synthesize a series of tunable poly(N-isopropylacrylamide) (PNIPAM) microparticles by the addition of polyethylene glycols (PEGs). The PEGs are used as porogens and could be removed simply by washing step. By varying molecular weights and concentrations of the PEGs, morphologies and temperature-sensitive properties of the formed PNIPAM microparticles are flexibly tuned. It is found that PEG of lower molecular weight induces smaller micropore sizes, and results in faster response rate. The volume changes prior to and after shrinkage can also be regulated by the addition of PEGs due to tuned homogeneities of micropores. The microparticles tuned by PEG1000 with ratio of added PEGs to NIPAM of 2:1 respond the fastest (120 s), whereas with ratio of added PEGs to NIPAM of 1:1 display largest volume change (1/γ=12.12). This simplicity and controllability of tunable microparticles synthesis are appealing for various applications ranging from chemical delivery, drug release control, to optical applications.  相似文献   

17.
The preconcentration of poly(ethylene glycols) (PEG) with various molecular weights on the hanging mercury drop electrode (HMDE) from a stirred solution was studied for the tensammetric determination of trace concentrations of these polymers. Preconcentration was significant in the case of PEGs having m.w. > 1000. The influence of the preconcentration potential on the cathodic tensammetric peak heights was studied in detail for PEG 1500, PEG 4000, PEG 6000, PEG 9000 and PEG 20 000. The concentration of the PEG affects this dependence. With a preconcentration potential of ?1.76 V vs. SCE applied for 10 min, the calibration graphs of these PEGs were linear in the concentration range 0.01–0.10 mg 1?1.  相似文献   

18.
A series of polyurethane (PU), polyethylene glycol (PEG) and castor oil (CO) (ricin) based foams (PU-PEG, PU-PEG40/CO60, PU-PEG60/CO40 and PU-CO) were prepared and their catalytic activity for removal of methylene blue (MB) dye was evaluated. The prepared foams were characterized by FTIR, SEM and TGA analysis. The foams were porous in nature and the thermal stability was improved with CO incorporation. The PU-CO furnished promising catalytic efficiency and PU-PEG, PU-CO, PU-PEG40/CO60 and PU-PEG60/CO40 removed MB dye completely within 33, 5, 12 and 20 min. The removal of MB dye over foams followed second order kinetic model. The reusability of PU-CO showed stability up to 10 runs. Moreover, the phytotoxicity of the treated dye solution was performed, which reduced significantly after dye solution treatment with prepared foams. The prepared PU-CO also showed biodegradable nature under soil natural conditions. The prepared PU based foams showed excellent catalytic potential for the removal of MB dye along with thermal stability and recyclability, which could be a potential class of materials for the remediation of dyes in effluents.  相似文献   

19.
Poly(oxyethylene‐H‐phosphonate)s (POE‐H‐Ps), with different poly(oxyethylene) segment lengths, were synthesized via conventional two‐stage polycondensation reaction of dimethyl‐H‐phosphonate and poly(ethylene glycols) (PEGs), with nominal molecular weights of 400, 600, and 1000 Da. The changes in the composition of the reaction mixtures during the polycondensation process were followed by size‐exclusion chromatography (SEC) and NMR. It was found that the three PEG fragments yield reproducibly POE‐H‐Ps with the following molecular weights: ~3000 Da (PEG‐400), ~6000 Da (PEG‐600), and ~10,000 Da (PEG‐1000) as measured by SEC, NMR, and VPO. The hydrolytic behavior of POE‐H‐Ps upon storage and in aqueous media with pH 3, 7.4, and 8 was studied for the first time by a combination of NMR and SEC. It was found that the long‐term stability of the polymers in dry state depends on the length of the PEG fragments and decreased in the following order: POE‐H‐P(PEG‐1000) > POE‐H‐P(PEG‐600) > POE‐H‐P(PEG‐400). The hydrolytic transformation of the polymers in aqueous media is affected mostly by the pH of the solution. The degradation products are PEG fragments containing phosphonate end groups—an important prerequisite for the usage of the POE‐H‐Ps as nontoxic drug delivery vehicles and in vivo precursors for PEGylated prodrugs. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4130–4139, 2008  相似文献   

20.
As a new type of topological poly(ethylene glycol) (PEG) analogue, a series of polygonal PEGs with digonal to hexagonal structures were developed. Polygonal PEGs with structures between the digonal and tetragonal types showed molecular‐level dispersion in water at 20 °C, whereas the pentagonal and hexagonal PEGs aggregated, which is suggestive of enhanced hydrophobicity by ring expansion. Heating induced conformational changes in the polygonal PEGs and increased their hydrophobicity. Among the polygonal PEGs, only the trigonal and hexagonal PEGs showed a distinct thermal response to form and increase the size of the aggregates, respectively. Given that tetragonal and pentagonal PEGs only marginally responded to heat treatment, the thermal responses are likely due to a topological effect. At low temperatures, the larger polygonal PEGs are more restricted despite the expanded rings. The trigonal PEG showed the largest change in mobility, whereas the tetragonal PEG exhibited the smallest change. Hence, the topology of the polygonal PEGs influences the intramolecular packing and the local dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号