首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The fundamental role of hydration water (also called interfacial water) is widely recognized in protein flexibility, especially in the existence of the so-called protein "dynamical transition" at around 220 K. In the present study, we take advantage of perdeuterated C-phycocyanin (CPC) and elastic incoherent neutron scattering (EINS) to distinguish between protein dynamics and interfacial water dynamics. Powders of hydrogenated (hCPC) and perdeuterated (dCPC) CPC protein have been hydrated, respectively, with D(2)O or H(2)O and measured by EINS to separately probe protein dynamics (hCPC/D(2)O) and water dynamics (dCPC/H(2)O) at different time- and length-scales. We find that "fast" (<20 ps) local mean-square displacements (MSD) of both protein and interfacial water coincide all along the temperature range, with the same dynamical transition temperature at ~220 K. On higher resolution (<400 ps), two different types of motions can be separated: (i) localized motions with the same amplitude for CPC and hydration water and two transitions at ~170 and ~240 K for both; (ii) large scale fluctuations exhibiting for both water molecules and CPC protein a single transition at ~240 K, with a significantly higher amplitude for the interfacial water than for CPC. Moreover, by comparing these motions with bulk water MSD measured under the same conditions, we show no coupling between bulk water dynamics and protein dynamics all along the temperature range. These results show that interfacial water is the main "driving force" governing both local and large scale motions in proteins.  相似文献   

2.
The hydration structure around nanometer-size hydrophobic solutes is studied with molecular dynamics simulation by taking aqueous solutions of C60 and C60H60 as examples. In the hydration shell around a single C60 or C60H60, dipoles of simulated water molecules tend to be aligned to form the vortexlike coherent pattern which lasts for 100 ps, while individual water molecules stay within the hydration shell for about 10 ps. This structural pattern organized by fluctuating and diffusively moving molecules should be called a "fluctuating cage". In the narrow region between a pair of C60 molecules or a pair of C60H60 molecules, water density strongly fluctuates and is correlated to the mean force between solutes. The fluctuating caging and drying between solutes affect the hydrophobic interaction and dynamical behaviors of solutes.  相似文献   

3.
The hydration structure of human lysozyme was studied with cryogenic X-ray diffraction experiment and molecular dynamics simulations. The crystal structure analysis at a resolution of 1.4 A provided 405 crystal water molecules around the enzyme. In the simulations at 300 K, the crystal structure was immersed in explicit water molecules. We examined correlations between crystal water sites and two physical quantities calculated from the 1-ns simulation trajectories: the solvent density reflecting the time-averaged distribution of water molecules, and the solvent dipole measuring the orientational ordering of water molecules around the enzyme. The local high solvent density sites were consistent with the crystal water sites, and better correlation was observed around surface residues with smaller conformational fluctuations during the simulations. Solvent dipoles around those sites exhibited coherent and persistent ordering, indicating that the hydration water molecules at the crystal water sites were highly oriented through the interactions with hydrophilic residues. Those water molecules restrained the orientational motions of adjoining water molecules and induced a solvent dipole field, which was persistent during the simulations around the enzyme. The coherent ordering was particularly prominent in and around the active site cleft of the enzyme. Because the ordering was significant up to the third to fourth solvent layer region from the enzyme surface, the coherently ordered solvent dipoles likely contributed to the molecular recognition of the enzyme in a long-distance range. The present work may provide a new approach combining computational and the experimental studies to understand protein hydration.  相似文献   

4.
The solvation of charged, nanometer-sized spherical solutes in water, and the effective, solvent-induced force between two such solutes are investigated by constant temperature and pressure molecular dynamics simulations of model solutes carrying various charge patterns. The results for neutral solutes agree well with earlier findings, and with predictions of simple macroscopic considerations: substantial hydrophobic attraction may be traced back to strong depletion ("drying") of the solvent between the solutes. This hydrophobic attraction is strongly reduced when the solutes are uniformly charged, and the total force becomes repulsive at sufficiently high charge; there is a significant asymmetry between anionic and cationic solute pairs, the latter experiencing a lesser hydrophobic attraction. The situation becomes more complex when the solutes carry discrete (rather than uniform) charge patterns. Due to antagonistic effects of the resulting hydrophilic and hydrophobic "patches" on the solvent molecules, water is once more significantly depleted around the solutes, and the effective interaction reverts to being mainly attractive, despite the direct electrostatic repulsion between solutes. Examination of a highly coarse-grained configurational probability density shows that the relative orientation of the two solutes is very different in explicit solvent, compared to the prediction of the crude implicit solvent representation. The present study strongly suggests that a realistic modeling of the charge distribution on the surface of globular proteins, as well as the molecular treatment of water, are essential prerequisites for any reliable study of protein aggregation.  相似文献   

5.
We report experimental and theoretical studies on water and protein dynamics following photoexcitation of apomyoglobin. Using site-directed mutation and with femtosecond resolution, we experimentally observed relaxation dynamics with a biphasic distribution of time scales, 5 and 87 ps, around the site Trp7. Theoretical studies using both linear response and direct nonequilibrium molecular dynamics (MD) calculations reproduced the biphasic behavior. Further constrained MD simulations with either frozen protein or frozen water revealed the molecular mechanism of slow hydration processes and elucidated the role of protein fluctuations. Observation of slow water dynamics in MD simulations requires protein flexibility, regardless of whether the slow Stokes shift component results from the water or protein contribution. The initial dynamics in a few picoseconds represents fast local motions such as reorientations and translations of hydrating water molecules, followed by slow relaxation involving strongly coupled water-protein motions. We observed a transition from one isomeric protein configuration to another after 10 ns during our 30 ns ground-state simulation. For one isomer, the surface hydration energy dominates the slow component of the total relaxation energy. For the other isomer, the slow component is dominated by protein interactions with the chromophore. In both cases, coupled water-protein motion is shown to be necessary for observation of the slow dynamics. Such biologically important water-protein motions occur on tens of picoseconds. One significant discrepancy exists between theory and experiment, the large inertial relaxation predicted by simulations but clearly absent in experiment. Further improvements required in the theoretical model are discussed.  相似文献   

6.
We report here our studies of hydration dynamics of confined water in aqueous nanochannels (approximately 50 A) of the lipidic cubic phase. By systematically anchoring the hydrocarbon tails of a series of tryptophan-alkyl ester probes into the lipid bilayer, we mapped out with femtosecond resolution the profile of water motions across the nanochannel. Three distinct time scales were observed, revealing discrete channel water structures. The interfacial water at the lipid surface is well-ordered, and the relaxation dynamics occurs in approximately 100-150 ps. These dynamically rigid water molecules are crucial for global structural stability of lipid bilayers and for stabilization of anchored biomolecules in membranes. The adjacent water layers near the lipid interface are hydrogen-bonded networks and the dynamical relaxation takes 10-15 ps. This quasi-bound water motion, similar to the typical protein surface hydration relaxation, facilitates conformation flexibility for biological recognition and function. The water near the channel center is bulklike, and the dynamics is ultrafast in less than 1 ps. These water molecules freely transport biomolecules near the channel center. The corresponding orientational relaxation at these three typical locations is well correlated with the hydration dynamics and local dynamic rigidity. These results reveal unique water structures and dynamical motions in nanoconfinements, which is critical to the understanding of nanoscopic biological activities and nanomaterial properties.  相似文献   

7.
Several models of relaxation for the dielectric spectra of aqueous urea solutions in the microwave region are compared. The spectra are shown to contain two main Debye components arising from the rotational motions of urea and water molecules. Two essentially different concentration regions in urea solutions are identified. The first is characterized by a small increase in the mobility of water molecules (τ1 = 7.8 ps) and the existence of hydrated urea molecules (τ2 = 19 ps). Due to the aggregation of urea molecules, the relaxation times for the latter process grow considerably in highly concentrated solutions. At the same time, faster molecular motions (τ3 = 6 ps) are observed for water molecules.  相似文献   

8.
This work presents an analysis of near environment of myoglobin (Mb) in different aqueous solutions (in the presence of NaCl, sucrose, trehalose, urea, and glycerol) using the coupled water fractions measured using a quartz crystal microbalance (QCM). The secondary structural features of the protein from circular dichroic (CD) spectroscopy and the coupled water fractions give important clues to the overall dynamics of the protein. Using time resolved fluorescence, these leads have been applied to understand the observed lifetime relaxations of Mb. Though the time scales of observation of coupled water and the lifetimes are very different, our study suggests that the trends in coupled water fraction seem to be good indicators for regulation of the relaxation dynamics of the protein. The relaxations generally show a triphasic distribution of time scales. The initial relaxation in the picoseconds time scale represents the local motions of coupled water followed by a slightly slower decay in hundreds of picoseconds attributable to coupled water-‘quasi free’ water interactions. The third nanosecond lifetime is due to changes in transitions in isomers of hydrated protein. The dynamics of coupled water in Mb with NaCl is the fastest (around 21 ps) and is slowest in glycerol (250 ps). The results strongly indicate that it is the resident times of water molecules that play a dominant role in the overall stability of protein in a particular hydrated isomer and not just always the number of such water molecules in the hydrated protein.  相似文献   

9.
The microscopic dynamics of the planar, multilamellar lipid bilayer system 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) has been investigated using quasielastic neutron scattering. The DMPC was hydrated to a level corresponding to approximately nine water molecules per lipid molecule. Selective deuteration has been used to separately extract the dynamics of the water, the acyl chains, and the polar head groups from the strong incoherent scattering of the remaining hydrogen atoms. Furthermore, the motions parallel and perpendicular to the bilayers were probed by using two different sample orientations relative to the incident neutron beam. For both sample orientations, the results showed an onset of water motions at 260 K on the experimental time scale of about 100 ps. From lack of wave-vector dependence of the onset temperature for water motions, it is evident that the observed water dynamics is of mainly rotational character at such low temperatures. At 290 K, i.e., slightly below the gel-to-liquid transition around 295 K, the nature of the water dynamics had changed to a more translational character, well described by a jump-diffusion model. On the limited experimental time and length (about 10 A) scales, this jump-diffusion process was isotropic, despite the very anisotropic system. The acyl chains exhibited a weak onset of anharmonic motions already at 120 K, probably due to conformational changes (trans-gauche and/or syn-anti) in the plane of the lipid bilayers. Other anharmonic motions were not observed on the experimental time scale until temperature had been reached above the gel-to-liquid transition around 295 K, where the acyl chains start to show more substantial motions.  相似文献   

10.
Molecular dynamics simulations were performed in order to obtain a detailed understanding of the self-diffusion mechanisms of methanol in the zeolite NaY system. We derived a new force-field term to describe the interactions between the methanol molecules and the extraframework cations. From the simulations, we show that diffusive behavior in the high-temperature range consists of a combination of both short- and long-range motions at low and intermediate loadings. This type of motion is characterized by an activation energy that decreases as the loading increases. At low loadings, we also observe short-range diffusive behavior based on a surface-mediated mechanism. The short-range behavior corresponds to motion only on the length scale of an FAU supercage, whereas the long-range behavior involves intercage diffusion. For the saturation loading corresponding to 96 methanol molecules per unit cell, only short-range motions within the same supercage predominate. Finally, the preferential arrangement of the adsorbate molecules around the extraframework cations are examined and compared with those previously deduced from experimental data.  相似文献   

11.
Molecular dynamics simulations are used to study the mechanism and kinetics of hydrated electron diffusion. The electron center of mass is found to exhibit Brownian-type behavior with a diffusion coefficient considerably greater than that of the solvent. As previously postulated by both experimental and theoretical works, the instantaneous response of the electron to the librational motions of surrounding water molecules constitutes the principal mode of motion. The diffusive mechanism can be understood within the traditional framework of transfer diffusion processes, where the diffusive step is akin to the exchange of an extramolecular electron between neighboring water molecules. This is a second-order process with a computed rate constant of 5.0 ps(-1) at 298 K. In agreement with experiment the electron diffusion exhibits Arrhenius behavior over the temperature range of 298-400 K. We compute an activation energy of 8.9 kJ mol(-1). Through analysis of Arrhenius plots and the application of a simple random walk model it is demonstrated that the computed rate constant for exchange of an excess electron is indeed the phenomenological rate constant associated with the diffusive process.  相似文献   

12.
13.
Large-scale protein conformational motions on nanosecond-microsecond time scales are important for many biological processes, but remain largely unexplored because of methodological limitations. NMR relaxation methods can access these time scales if protein tumbling is prevented, but the isotropy required for high-resolution solution NMR is then lost. However, if the immobilized protein molecules are randomly oriented, the water 2H and 17O spins relax as in a solution of freely tumbling protein molecules, with the crucial difference that they now sample motions on all time scales up to approximately 100 micros. In particular, the exchange rates of internal water molecules can be determined directly from the 2H or 17O magnetic relaxation dispersion (MRD) profile. This possibility opens up a new window for characterizing the motions of individual internal water molecules as well as the large-scale protein conformational fluctuations that govern the exchange rates of structural water molecules. We introduce and validate this new NMR method by presenting and analyzing an extensive set of 2H and 17O MRD data from cross-linked gels of two model proteins: bovine pancreatic trypsin inhibitor and ubiquitin. We determine residence times and order parameters of four internal water molecules in these proteins and show that they are quantitatively consistent with the information available from crystallography and solution MRD. We also show how slow motions of side-chains bearing labile hydrogens can be monitored by the same approach. Proteins of any size can be studied at physiological hydration levels with this method.  相似文献   

14.
The article reports on a molecular dynamics simulation study of the influence of moderate, nondenaturing pressure on the slow and fast internal relaxation dynamics of lysozyme. The model parameters of the fractional Ornstein-Uhlenbeck process are used to quantify the changes. We find that the nonexponential character for diffusive motions on time scales above 10 ps is enhanced and that the diffusion processes are slowed down. The diffusive motions on the subpicosecond time scale appear, in contrast, accelerated, whereas the nonexponential character is not altered by pressure. We attribute these findings to the different natures of slow and fast relaxation processes, which are characterized by structural rearrangements and collisions, respectively. The analyses are facilitated by the use of spatially resolved relaxation rate spectra.  相似文献   

15.
Incoherent quasi-elastic neutron scattering (QENS) has been used to measure the dynamics of water molecules in solutions of a model protein backbone, N-acetyl-glycine-methylamide (NAGMA), as a function of concentration, for comparison with results for water dynamics in aqueous solutions of the N-acetyl-leucine-methylamide (NALMA) hydrophobic peptide at comparable concentrations. From the analysis of the elastic incoherent structure factor, we find significant fractions of elastic intensity at high and low concentrations for both solutes, which corresponds to a greater population of protons with rotational time scales outside the experimental resolution (>13 ps). The higher-concentration solutions show a component of the elastic fraction that we propose is due to water motions that are strongly coupled to the solute motions, while for low-concentration solutions an additional component is activated due to dynamic coupling between inner and outer hydration layers. An important difference between the solute types at the highest concentration studied is found from stretched exponential fits to their experimental intermediate scattering functions, showing more pronounced anomalous diffusion signatures for NALMA, including a smaller stretched exponent beta and a longer structural relaxation time tau than those found for NAGMA. The more normal water diffusion exhibited near the hydrophilic NAGMA provides experimental support for an explanation of the origin of the anomalous diffusion behavior of NALMA as arising from frustrated interactions between water molecules when a chemical interface is formed upon addition of a hydrophobic side chain, inducing spatial heterogeneity in the hydration dynamics in the two types of regions of the NALMA peptide. We place our QENS measurements on model biological solutes in the context of other spectroscopic techniques and provide both confirming as well as complementary dynamic information that attempts to give a unifying molecular view of hydration dynamics signatures near peptides and proteins.  相似文献   

16.
We report classical and tight-binding molecular dynamics simulations of the C(60) fullerene and cubane molecular crystal in order to investigate the intermolecular dynamics and polymerization processes. Our results show that, for 200 and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations, while C(60) fullerenes show rotational motions. Fullerenes perform "free" rotational motions at short times (approximately < 1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (approximately > 10 ps). The mechanisms underlying these dynamics are presented. Random copolymerizations among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure. Changes in the radial distribution function and electronic density of states indicate the coexistence of amorphous and crystalline phases. The different conformational phases that cubanes and fullerenes undergo during the copolymerization process are discussed.  相似文献   

17.
A cluster of 216 water molecules in a vacuum is simulated (molecular-dynamic trajectory is 40 ps); the average kinetic energy of water molecule movements corresponds to 300 K. The HLC model of data representation in time intervals of 0.082 ps is used to investigate the molecular scale processes. Volumetric and surface movements of water molecules are distinguished by the rank distributions based on the molecular movement character. The method for calculating volumetric and surface self-diffusion coefficients of molecules in a cluster is proposed. The cooperative character of movements of water molecules in a 5.4 Å-thick surface layer of the cluster is revealed.  相似文献   

18.
Formation of protein-DNA complex is an important step in regulation of genes in living organisms. One important issue in this problem is the role played by water in mediating the protein-DNA interactions. In this work, we have carried out atomistic molecular dynamics simulations to explore the heterogeneous dynamics of water molecules present in different regions around a complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. It is demonstrated that such heterogeneous water motions around the complex are correlated with the relaxation time scales of hydrogen bonds formed by those water molecules with the protein and DNA. The calculations reveal the existence of a fraction of extraordinarily restricted water molecules forming a highly rigid thin layer in between the binding motifs of the protein and DNA. It is further proved that higher rigidity of water layers around the complex originates from more frequent reformations of broken water-water hydrogen bonds. Importantly, it is found that the formation of the complex affects the transverse and longitudinal degrees of freedom of surrounding water molecules in a nonuniform manner.  相似文献   

19.
We have investigated the dynamical behavior of both the protein hemoglobin and its surrounding water during the denaturation process using modulated temperature differential scanning calorimetry, quasielastic neutron scattering, and frequency dependent conductivity measurements. To distinguish between the scattering from the protein and its surrounding water, neutron scattering measurements were performed on both a fully hydrogenated sample as well as a sample where the water and the exchangeable hydrogen atoms on the protein surface were deuterated. The experimental data show that the unfolding and aggregation processes are substantially overlapping in temperature. The unfolding process occurs in the approximate temperature range of 315-345 K, whereas the aggregation process starts around 330-335 K and is completed at 360 K. Furthermore, the results suggest that the secondary structure of the protein unfolds at about 325 K, and that this leads to an increased number of water molecule hydrogen bonded to the protein. Thus, the unfolding of the secondary structure reduces the number of mobile (on the experimental time scale of about 50-100 ps) water molecules. In contrast, the aggregation of protein molecules seems to have a minor effect on the dynamics of its surrounding water. In the case of the protein dynamics there are competing effects from unfolding and aggregation. The unfolding process increases the flexibility of the protein, whereas the initial aggregation reduces its dynamics. The conductivity seems to be negatively affected by both reduced water mobility and an aggregation of protein molecules.  相似文献   

20.
We report on molecular dynamics simulations of the frequency-dependent dielectric relaxation spectra at room temperature for aqueous solutions of a hydrophilic peptide and an amphiphilic peptide at two concentrations. We find that only the high-concentration amphiphilic peptide solution exhibits an anomalous dielectric increment over that of pure water, while the hydrophilic peptide exhibits a significant dielectric decrement. The dielectric component analysis carried out by decomposing these peptide solutions into peptide, hydration layer, and outer layer(s) of water clearly shows the presence of a unique dipolar component with a relaxation time scale on the order of approximately 25 ps (compared to the bulk water time scale of approximately 11 ps) that originates from the interaction between the hydration layer water and the outer layer(s) of water. Results obtained from the dielectric component analysis further show the emergence of a distinct and much lower frequency relaxation process for the high-concentration amphiphilic peptide compared to the hydrophilic peptide due to strong peptide dipolar couplings to all constituents, accompanied by a slowing of the structural relaxation in all water layers, giving rise to time scales close to approximately 1 ns. We suggest that the molecular origin of the dielectric relaxation anomalies is due to frustration in the water network arising from the amphiphilic chemistry of the peptide that does not allow it to reorient on the picosecond time scale of bulk water motions. This explanation is consistent with the idea of the "slaving" of residue side chain motions to protein surface water, and furthermore offers the possibility that the anomalous dynamics observed from a number of spectroscopies arises at the interface of hydrophobic and hydrophilic domains on the protein surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号