首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five-dimensional nonadiabatic quantum dynamics studies have been carried out on two new potential energy surfaces of S(2)((1)A(')) and T(7)((3)A(")) states for the title oxygen molecules collision with coplanar configurations, along with the spin-orbit coupling between them. The ab initio calculations are based on complete active state second-order perturbation theory with the 6-31+G(d) basis set. The calculated spin-orbit induced transition probability as a function of collision energy is found to be very small for this energy pooling reaction. The rate constant obtained from a uniform J-shifting approach is compared with the existing theoretical and experimental data, and the spin-orbit effect is also discussed in this electronic energy-transfer process.  相似文献   

2.
State-of-the-art ab initio techniques have been applied to compute the potential energy curves for the electronic states in the A(1)Σ(u)(+), c(3)Π(u), and a(3)Σ(u)(+) manifold of the strontium dimer, the spin-orbit and nonadiabatic coupling matrix elements between the states in the manifold, and the electric transition dipole moment from the ground X(1)Σ(g)(+) to the nonrelativistic and relativistic states in the A+c+a manifold. The potential energy curves and transition moments were obtained with the linear response (equation of motion) coupled cluster method limited to single, double, and linear triple excitations for the potentials and limited to single and double excitations for the transition moments. The spin-orbit and nonadiabatic coupling matrix elements were computed with the multireference configuration interaction method limited to single and double excitations. Our results for the nonrelativistic and relativistic (spin-orbit coupled) potentials deviate substantially from recent ab initio calculations. The potential energy curve for the spectroscopically active (1)0(u)(+) state is in quantitative agreement with the empirical potential fitted to high-resolution Fourier transform spectra [A. Stein, H. Kno?ckel, and E. Tiemann, Eur. Phys. J. D 64, 227 (2011)]. The computed ab initio points were fitted to physically sound analytical expressions, and used in converged coupled channel calculations of the rovibrational energy levels in the A+c+a manifold and line strengths for the A(1)Σ(u)(+)←X(1)Σ(g (+) transitions. Positions and lifetimes of quasi-bound Feshbach resonances lying above the (1)S(0) + (3)P(1) dissociation limit were also obtained. Our results reproduce (semi)quantitatively the experimental data observed thus far. Predictions for on-going and future experiments are also reported.  相似文献   

3.
The photodissociations of o-, m-, and p-bromotoluene were investigated by ab initio and spin-orbit ab initio calculations. The possible photodissociation mechanisms at 266 and 193 nm were clarified by multistate second order multiconfigurational perturbation theory (MS-CASPT2) calculated potential energy curves, vertical excitation energies, and oscillator strengths of low-lying states. The dissociation products with spin-orbit-coupled states of Br(*)((2)P(12)) and Br((2)P(32)) were identified by the MS-CASPT2 method in conjunction with spin-orbit interaction through complete active space state interaction (MS-CASPT2/CASSI-SO) calculations. The effects of methyl rotation and substituent on the photodissociation mechanism were discussed.  相似文献   

4.
A reduced dimensionality quantum scattering method is extended to the study of spin-orbit nonadiabatic transitions in the CH(3) + HCl ? CH(4) + Cl((2)P(J)) reaction. Three two-dimensional potential energy surfaces are developed by fitting a 29 parameter double-Morse function to CCSD(T)/IB//MP2/cc-pV(T+d)Z-dk ab initio data; interaction between surfaces is described by geometry-dependent spin-orbit coupling functions fit to MCSCF/cc-pV(T+d)Z-dk ab initio data. Spectator modes are treated adiabatically via inclusion of curvilinear projected frequencies. The total scattering wave function is expanded in a vibronic basis set and close-coupled equations are solved via R-matrix propagation. Ground state thermal rate constants for forward and reverse reactions agree well with experiment. Multi-surface reaction probabilities, integral cross sections, and initial-state selected branching ratios all highlight the importance of vibrational energy in mediating nonadiabatic transition. Electronically excited state dynamics are seen to play a small but significant role as consistent with experimental conclusions.  相似文献   

5.
The bound rovibronic levels of the He-HF+ complex were calculated for total angular momentum J=1/2, 3/2, 5/2, 7/2, and 9/2 with the use of ab initio diabatic intermolecular potentials presented in Paper I and the inclusion of spin-orbit coupling. The character of the rovibronic states was interpreted by a series of calculations with the intermolecular distance R fixed at values ranging from 1.5 to 8.5 A and by analysis of the wave functions. In this analysis we used approximate angular momentum quantum numbers defined with respect to a dimer body-fixed (BF) frame with its z axis parallel to the intermolecular vector R and with respect to a molecule-fixed (MF) frame with its z axis parallel to the HF+ bond. The linear equilibrium geometry makes the He-HF+ complex a Renner-Teller system. We found both sets of quantum numbers, BF and MF, useful to understand the characteristics of the Renner-Teller effect in this system. In addition to the properties of a "normal" semirigid molecule Renner-Teller system it shows typical features caused by large-amplitude internal (bending) motion. We also present spectroscopic data: stretch and bend frequencies, spin-orbit splittings, parity splittings, and rotational constants.  相似文献   

6.
A coupled cluster composite approach has been used to accurately determine the spectroscopic constants, bond dissociation energies, and heats of formation for the X1(2)II(3/2) states of the halogen oxides ClO, BrO, and IO, as well as their negative ions ClO-, BrO-, and IO-. After determining the frozen core, complete basis set (CBS) limit CCSD(T) values, corrections were added for core-valence correlation, relativistic effects (scalar and spin-orbit), the pseudopotential approximation (BrO and IO), iterative connected triple excitations (CCSDT), and iterative quadruples (CCSDTQ). The final ab initio equilibrium bond lengths and harmonic frequencies for ClO and BrO differ from their accurate experimental values by an average of just 0.0005 A and 0.8 cm-1, respectively. The bond length of IO is overestimated by 0.0047 A, presumably due to an underestimation of molecular spin-orbit coupling effects. Spectroscopic constants for the spin-orbit excited X2(2)III(1/2) states are also reported for each species. The predicted bond lengths and harmonic frequencies for the closed-shell anions are expected to be accurate to within about 0.001 A and 2 cm-1, respectively. The dissociation energies of the radicals have been determined by both direct calculation and through use of negative ion thermochemical cycles, which made use of a small amount of accurate experimental data. The resulting values of D0, 63.5, 55.8, and 54.2 kcal/mol for ClO, BrO, and IO, respectively, are the most accurate ab initio values to date, and those for ClO and BrO differ from their experimental values by just 0.1 kcal/mol. These dissociation energies lead to heats of formation, DeltaH(f) (298 K), of 24.2 +/- 0.3, 29.6 +/- 0.4, and 29.9 +/- 0.6 kcal/mol for ClO, BrO, and IO, respectively. Also, the final calculated electron affinities are all within 0.2 kcal/mol of their experimental values. Improved pseudopotential parameters for the iodine atom are also reported, together with revised correlation consistent basis sets for this atom.  相似文献   

7.
New ab initio potential energy surfaces for the (2)Pi ground electronic state of the Ar-SH complex are presented, calculated at the RCCSD(T)/aug-cc-pV5Z level. Weakly bound rotation-vibration levels are calculated using coupled-channel methods that properly account for the coupling between the two electronic states. The resulting wave functions are analyzed and a new adiabatic approximation including spin-orbit coupling is proposed. The ground-state wave functions are combined with those obtained for the excited (2)Sigma(+) state [D. M. Hirst, R. J. Doyle, and S. R. Mackenzie, Phys. Chem. Chem. Phys. 6, 5463 (2004)] to produce transition dipole moments. Modeling the transition intensities as a combination of these dipole moments and calculated lifetime values [A. B. McCoy, J. Chem. Phys. 109, 170 (1998)] leads to a good representation of the experimental fluorescence excitation spectrum [M.-C. Yang, A. P. Salzberg, B.-C. Chang, C. C. Carter, and T. A. Miller, J. Chem. Phys. 98, 4301 (1993)].  相似文献   

8.
We describe fully quantum, time-independent scattering calculations of the F+H2-->HF+H reaction, concentrating on the HF product rotational distributions in v'=3. The calculations involved two new sets of ab initio potential energy surfaces, based on large basis set, multireference configuration-interaction calculations, which are further scaled to reproduce the experimental exoergicity of the reaction. In addition, the spin-orbit, Coriolis, and electrostatic couplings between the three quasidiabatic F+H2 electronic states are included. The calculated integral cross sections are compared with the results of molecular beam experiments. At low collision energies, a significant fraction of the reaction is due to Born-Oppenheimer forbidden, but energetically allowed reaction of F in its excited (2P 1/2) spin-orbit state. As the collision energy increases, the Born-Oppenheimer allowed reaction of F in its ground (2P 3/2) spin-orbit state rapidly dominates. Overall, the calculations agree reasonably well with the experiment, although there remains some disagreement with respect to the degree of rotational excitation of the HF(v'=3) products as well as with the energy dependence of the reactive cross sections at the lowest collision energies.  相似文献   

9.
Highly correlated ab initio methods were used in order to generate the potential-energy curves of the SO+ electronic states correlating to S+(4Su)+O(3Pg) and S+(2Du)+O(3Pg). These curves were used for deducing accurate spectroscopic properties for these electronic states. Our calculations predict the existence of a 2Phi state lying close in energy to the well-characterized b 4Sigma- state and several weakly bound quartet and doublet states located in the 6-9 eV internal energy range not identified yet. The spin-orbit integrals between these electronic states were evaluated using these highly correlated wave functions, allowing the discussion of the metastability and the predissociation processes forming S+ +O in their electronic ground states. Multistep spin-orbit-induced predissociation pathways are suggested. More specifically, the experimentally determined dissociative potential-energy curve [H. Bissantz et al., Z. Phys. D 22, 727 (1992)] proposed to explain the rapid SO+(b 4Sigma-, v> or =13)-->S+(4Su)+O(3Pg) reaction is found to coincide with the 2 4Pi potential-energy curve for short internuclear distances and with the repulsive 1 6Pi state for longer internuclear separations.  相似文献   

10.
Full-dimensional, three-state, surface hopping calculations of the photodissociation dynamics of formaldehyde are reported on ab initio potential energy surfaces (PESs) for electronic states S(1), T(1), and S(0). This is the first such study initiated on S(1) with ab initio-calculated spin-orbit couplings among the three states. We employ previous PESs for S(0) and T(1), and a new PES for S(1), which we describe here, as well as new spin-orbit couplings. The time-dependent electronic state populations and the branching ratio of radical products produced from S(0) and T(1) states and that of total radical products and molecular products at three total energies are calculated. Details of the surface hopping dynamics are described, and a novel pathway for isomerization on T(1) via S(0) is reported. Final translational energy distributions of H + HCO products from S(0) and T(1) are also reported as well as the translational energy distribution and final rovibrational distributions of H(2) products from the molecular channel. The present results are compared to previous trajectory calculations initiated from the global minimum of S(0). The roaming pathway leading to low rotational distribution of CO and high vibrational population of H(2) is observed in the present calculations.  相似文献   

11.
Photodissociations of the o-, m-, and p-chlorotoluene at 193 and 266 nm were investigated by ab initio calculations with and without spin-orbit interaction. The experimentally observed photodissociation channels were clearly assigned by multistate second order multiconfigurational perturbation theory (MS-CASPT2) calculated potential energy curves. The dissociation products with spin-orbit-coupled states of Cl*(2P1/2) and Cl(2P3/2) were identified by MS-CASPT2 in conjunction with spin-orbit interaction through complete active space state interaction (MS-CASPT2/CASSI-SO) calculations. The effects of methyl rotation and substituent on the photodissociation mechanism were discussed in detail.  相似文献   

12.
The authors present a new potential energy curve, electric dipole moment function, and spin-orbit coupling function for OH in the X 2Pi state, based on high-level ab initio calculations. These properties, combined with a spectroscopically parametrized lambda-type doubling Hamiltonian, are used to compute the Einstein A coefficients and photoabsorption cross sections for the OH Meinel transitions. The authors investigate the effect of spin-orbit coupling on the lifetimes of rovibrationally excited states. Comparing their results with earlier ab initio calculations, they conclude that their dipole moment and potential energy curve give the best agreement with experimental data to date. The results are made available via EPAPS Document No. E-JCPSAG-017709.  相似文献   

13.
Based on the ab initio potential energy, spin-orbit coupling, electronic transition dipole moment, and radial nonadiabatic coupling functions, the energy level positions, lifetimes, and radiative transition probabilities (Einstein A coefficients) have been determined for the lowest electronic states of NO2+ using the log-amplitude-phase, stabilization, and complex-scaling methods. The calculated characteristics are in reasonable agreement to the available experimental data, thus, evidencing the reliability of the theoretical predictions for the characteristics unobserved to date. With the exception of the v相似文献   

14.
A new method has been reported recently [H. Ndome, R. Welsch, and W. Eisfeld, J. Chem. Phys. 136, 034103 (2012)] that allows the efficient generation of fully coupled potential energy surfaces (PESs) including derivative and spin-orbit (SO) coupling. The method is based on the diabatic asymptotic representation of the molecular fine structure states and an effective relativistic coupling operator and therefore is called effective relativistic coupling by asymptotic representation (ERCAR). The resulting diabatic spin-orbit coupling matrix is constant and the geometry dependence of the coupling between the eigenstates is accounted for by the diabatization. This approach allows to generate an analytical model for the fully coupled PESs without performing any ab initio SO calculations (except perhaps for the atoms) and thus is very efficient. In the present work, we study the performance of this new method for the example of hydrogen iodide as a well-established test case. Details of the diabatization and the accuracy of the results are investigated in comparison to reference ab initio calculations. The energies of the adiabatic fine structure states are reproduced in excellent agreement with reference ab initio data. It is shown that the accuracy of the ERCAR approach mainly depends on the quality of the underlying ab initio data. This is also the case for dissociation and vibrational level energies, which are influenced by the SO coupling. A method is presented how one-electron operators and the corresponding properties can be evaluated in the framework of the ERCAR approach. This allows the computation of dipole and transition moments of the fine structure states in good agreement with ab initio data. The new method is shown to be very promising for the construction of fully coupled PESs for more complex polyatomic systems to be used in quantum dynamics studies.  相似文献   

15.
Developed formulas for the exchange interaction energy between two neutral one-active electron atoms interacting at large distances R are presented in terms of known basic integrals obtained from an asymptotic method for the alkali dimers M2 dissociating to M(ns) + M(ns), M(n′l) + M(n′l), l = 0, …, 3 and M (np) + M(np). Detailed illustrative numerical results are displayed for the molecular states of Na2 dissociating to the limit Na(3s) + Na(3p). Comparisons with very accurate ab initio results as well as with some available experimental data show that accurate potential energy curves for these excited states may be obtained in a very large range of internuclear distances by connecting ab initio curves for small and intermediate values of R with long-range curves obtained as the sum of usual multipolar Coulombic energy and asymptotic exchange energy.  相似文献   

16.
17.
Ab initio study of excitation energies and oscillator strengths for absorption towards the (3)P(1) and (1)P(1) states of the Bi(3+) ion has been performed for the Bi(3+) ion in gas phase and as a dopant of the cubic elpasolite Cs(2)NaYCl(6) and the yttria Y(2)O(3) crystal using the ab initio embedded-cluster method. The ground and excited states were computed with a relativistic spin-orbit configuration interaction approach suited for heavy elements. Electron correlation was treated in the scalar relativistic scheme with perturbative, variational, and coupled-cluster methods. Intermediate coupling is included via an effective-Hamiltonian based spin-orbit configuration interaction approach. Small-core (60 electrons) and large-core (78 electrons) relativistic effective core potentials (ECPs) have been used to describe the bismuth ion. The best match with experiment was obtained with the small-core ECP. The accuracy of excitation energies strongly depends on the electron correlation method used. The agreement between experimental data and the results obtained using second-order multiconfigurational perturbation theory is greatly improved with the shifted zeroth-order Hamiltonian proposed by Ghido et al. [Chem. Phys. Lett. 396, 142 (2004)]. Although quite time consuming, coupled-cluster and variational methods yield good agreement with experimental data. The first absorption band recorded for the doped elpasolite crystal is positioned with an excellent accuracy while the computed energy of the second absorbing manifold is in poorer agreement with experimental data. This suggests that interactions with neglected close-lying excited states with a ligand-to-metal charge transfer character may be significant. Calculations of the spectrum of Bi(3+) doping yttria in both the S(6) and C(2) site symmetries indicate that the absorbing manifold arises from electronic excitations localized on the Bi(3+) doping ion with main triplet 6s6p character. Our results predict the first absorbing peak to lie about 0.5 eV lower for the S(6) sites than for the C(2) site, thus attributing the violet and the green emission wavelengths to the S(6) and C(2) sites, respectively. A subsequent study of Stokes shift and emission wavelength should hopefully lead to a final assignment of the measured excitation spectra.  相似文献   

18.
High-level ab initio potential-energy curves and transition dipole moments for the OH X 2Pi, 2 2Pi, 1 2Sigma-, D 2Sigma-, 3 2Sigma-, A 2Sigma+, B 2Sigma+, 1 2Delta, 1 4Sigma-, and 1 4Pi states are computed. The results are used to estimate the (2+1) resonance enhanced multiphoton ionization spectrum for the (D,3)2Sigma-(upsilon')<--2hnuX 2Piupsilon") transitions, which are compared with experiments by Greenslade et al. [see M. E. Greenslade, M. I. Lester, D. C. Radenovic, J. A. van Roij, and D. H. Parker, J. Chem. Phys. 123, 074309 (2005), preceeding paper]. We use the discrete variable representation-absorbing boundary condition method to incorporate the effect of the dissociative intermediate 1 2Sigma- state. We obtain qualitative agreement with experiment for the line strengths. Radiative and predissociative decay rates of the Rydberg (D,3)2Sigma- states of OH and OD were computed, including spin-orbit coupling effects and the effect of spin-electronic and gyroscopic coupling. We show that the lifetime of the Rydberg 2Sigma- states for rotationally cold molecules is limited mainly by predissociation caused by spin-orbit coupling.  相似文献   

19.
The three adiabatic potential surfaces of the Br(2P)-HCN complex that correlate to the 2P ground state of the Br atom were calculated ab initio. With the aid of a geometry-dependent diabatic mixing angle, also calculated ab initio, these adiabatic potential surfaces were transformed into a set of four diabatic potential surfaces required to define the full 3 x 3 matrix of diabatic potentials. Each of these diabatic potential surfaces was expanded in terms of the appropriate spherical harmonics in the atom-linear molecule Jacobi angle theta. The dependence of the expansion coefficients on the distance R between Br and the HCN center of mass and on the CH bond length was fit to an analytic form. For HCN in its equilibrium geometry, the global minimum with De = 800.4 cm(-1) and Re = 6.908a0 corresponds to a linear Br-NCH geometry, with an electronic ground state of Sigma symmetry. A local minimum with De = 415.1 cm-1, Re = 8.730a0, and a twofold degenerate Pi ground state is found for the linear Br-HCN geometry. The binding energy, De, depends strongly on the CH bond length for the Br-HCN complex and much less strongly for the Br-NCH complex, with a longer CH bond giving stronger binding for both complexes. Spin-orbit coupling was included and diabatic states were constructed that correlate to the ground 2P3/2 and excited 2P1/2 spin-orbit states of the Br atom. For the ground spin-orbit state with electronic angular momentum j = (3/2) the minimum in the potential for projection quantum number omega = +/-(3/2) coincides with the local minimum for linear Br-HCN of the spin-free case. The minimum in the potential for projection quantum number omega = +/-(1/2) occurs for linear Br-NCH but is considerably less deep than the global minimum of the spin-free case. According to the lowest spin-orbit coupling included adiabatic potential the two linear isomers, Br-NCH and Br-HCN, are about equally stable. In the subsequent paper, we use these potentials in calculations of the rovibronic states of the Br-HCN complex.  相似文献   

20.
A new global potential energy surface for the N + N2 exchange reaction has been built from ab initio data. To overcome the difficulty of carrying out ab initio calculations for a large set of geometries the alternative strategy of fitting the minimum energy paths of the surface and their angular dependence using a modified LAGROBO functional form has been adopted. In this way we have been able to reproduce all the main features of the potential using a fairly small set of ab initio values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号