共查询到20条相似文献,搜索用时 2 毫秒
1.
Envelope detection and processing are very important for cochlear implant (CI) listeners, who must rely on obtaining significant amounts of acoustic information from the time-varying envelopes of stimuli. In previous work, Chatterjee and Robert [JARO 2(2), 159-171 (2001)] reported on a stochastic-resonance-type effect in modulation detection by CI listeners: optimum levels of noise in the envelope enhanced modulation detection under certain conditions, particularly when the carrier level was low. The results of that study suggested that a low carrier level was sufficient to evoke the observed stochastic resonance effect, but did not clarify whether a low carrier level was necessary to evoke the effect. Modulation thresholds in CI listeners generally decrease with increasing carrier level. The experiments in this study were designed to investigate whether the observed noise-induced enhancement is related to the low carrier level per se, or to the poor modulation sensitivity that accompanies it. This was done by keeping the carrier amplitude fixed at a moderate level and increasing modulation frequency so that modulation sensitivity could be reduced without lowering carrier level. The results suggest that modulation sensitivity, not carrier level, is the primary factor determining the effect of the noise. 相似文献
2.
Perception of a target voice in the presence of a competing talker, of same or different gender as the target, was investigated in cochlear implant users, in implant-alone and bimodal (acoustic hearing in the non-implanted ear) conditions. Recordings of two male and two female talkers acted as targets and maskers, to investigate whether bimodal benefit increased for different compared to same gender target/maskers due to increased ability to perceive and utilize fundamental frequency and spectral-shape differences. In both listening conditions participants showed benefit of target/masker gender difference. There was an overall bimodal benefit, which was independent of target/masker gender difference. 相似文献
3.
Pfingst BE 《The Journal of the Acoustical Society of America》2011,129(6):3908-3915
Cochlear implant function, as assessed by psychophysical measures, varies from one stimulation site to another within a patient's cochlea. This suggests that patient performance might be improved by selection of the best-functioning sites for the processor map. In evaluating stimulation sites for such a strategy, electrode configuration is an important variable. Variation across stimulation sites in loudness-related measures (detection thresholds and maximum comfortable loudness levels), is much larger for stimulation with bipolar electrode configurations than with monopolar configurations. The current study found that, in contrast to the loudness-related measures, magnitudes of across-site means and the across-site variances of modulation detection thresholds were not dependent on electrode configuration, suggesting that the mechanisms underlying variation in these various psychophysical measures are not all the same. The data presented here suggest that bipolar and monopolar electrode configurations are equally effective in identifying good and poor stimulation sites for modulation detection but that the across-site patterns of modulation detection thresholds are not the same for the two configurations. Therefore, it is recommended to test all stimulation sites using the patient's clinically assigned electrode configuration when performing psychophysical evaluation of a patient's modulation detection acuity to select sites for the processor map. 相似文献
4.
Cochlear implant users may perceive intermediate place-pitches between those elicited by the individual electrodes when two electrodes are stimulated simultaneously or sequentially. This study examined pitch discrimination between adjacent electrodes using sequential dual-electrode stimulation in terms of the sensitivity index, d', which was obtained by adding d's from intermediate dual-electrode stimuli. Loudness was balanced for each tested pair and the intensities were roved. Twelve ears with the Nucleus 24 or Freedom implants demonstrated a wide range of d', from 0.7 to 9.6. "Virtual channels" can be implemented through nonsimultaneous stimulation, with comparable pitch discrimination to that observed with simultaneous stimulation. 相似文献
5.
6.
Won JH Drennan WR Nie K Jameyson EM Rubinstein JT 《The Journal of the Acoustical Society of America》2011,130(1):376-388
The goals of the present study were to measure acoustic temporal modulation transfer functions (TMTFs) in cochlear implant listeners and examine the relationship between modulation detection and speech recognition abilities. The effects of automatic gain control, presentation level and number of channels on modulation detection thresholds (MDTs) were examined using the listeners' clinical sound processor. The general form of the TMTF was low-pass, consistent with previous studies. The operation of automatic gain control had no effect on MDTs when the stimuli were presented at 65 dBA. MDTs were not dependent on the presentation levels (ranging from 50 to 75 dBA) nor on the number of channels. Significant correlations were found between MDTs and speech recognition scores. The rates of decay of the TMTFs were predictive of speech recognition abilities. Spectral-ripple discrimination was evaluated to examine the relationship between temporal and spectral envelope sensitivities. No correlations were found between the two measures, and 56% of the variance in speech recognition was predicted jointly by the two tasks. The present study suggests that temporal modulation detection measured with the sound processor can serve as a useful measure of the ability of clinical sound processing strategies to deliver clinically pertinent temporal information. 相似文献
7.
Nelson DA Donaldson GS Kreft H 《The Journal of the Acoustical Society of America》2008,123(3):1522-1543
Forward-masked psychophysical spatial tuning curves (fmSTCs) were measured in twelve cochlear-implant subjects, six using bipolar stimulation (Nucleus devices) and six using monopolar stimulation (Clarion devices). fmSTCs were measured at several probe levels on a middle electrode using a fixed-level probe stimulus and variable-level maskers. The average fmSTC slopes obtained in subjects using bipolar stimulation (3.7 dBmm) were approximately three times steeper than average slopes obtained in subjects using monopolar stimulation (1.2 dBmm). Average spatial bandwidths were about half as wide for subjects with bipolar stimulation (2.6 mm) than for subjects with monopolar stimulation (4.6 mm). None of the tuning curve characteristics changed significantly with probe level. fmSTCs replotted in terms of acoustic frequency, using Greenwood's [J. Acoust. Soc. Am. 33, 1344-1356 (1961)] frequency-to-place equation, were compared with forward-masked psychophysical tuning curves obtained previously from normal-hearing and hearing-impaired acoustic listeners. The average tuning characteristics of fmSTCs in electric hearing were similar to the broad tuning observed in normal-hearing and hearing-impaired acoustic listeners at high stimulus levels. This suggests that spatial tuning is not the primary factor limiting speech perception in many cochlear implant users. 相似文献
8.
Svirsky MA Sagi E Meyer TA Kaiser AR Teoh SW 《The Journal of the Acoustical Society of America》2011,129(4):2191-2200
The multidimensional phoneme identification model is applied to consonant confusion matrices obtained from 28 postlingually deafened cochlear implant users. This model predicts consonant matrices based on these subjects' ability to discriminate a set of postulated spectral, temporal, and amplitude speech cues as presented to them by their device. The model produced confusion matrices that matched many aspects of individual subjects' consonant matrices, including information transfer for the voicing, manner, and place features, despite individual differences in age at implantation, implant experience, device and stimulation strategy used, as well as overall consonant identification level. The model was able to match the general pattern of errors between consonants, but not the full complexity of all consonant errors made by each individual. The present study represents an important first step in developing a model that can be used to test specific hypotheses about the mechanisms cochlear implant users employ to understand speech. 相似文献
9.
JH Won C Lorenzi K Nie X Li EM Jameyson WR Drennan JT Rubinstein 《The Journal of the Acoustical Society of America》2012,132(2):1113-1119
Previous studies have demonstrated that normal-hearing listeners can understand speech using the recovered "temporal envelopes," i.e., amplitude modulation (AM) cues from frequency modulation (FM). This study evaluated this mechanism in cochlear implant (CI) users for consonant identification. Stimuli containing only FM cues were created using 1, 2, 4, and 8-band FM-vocoders to determine if consonant identification performance would improve as the recovered AM cues become more available. A consistent improvement was observed as the band number decreased from 8 to 1, supporting the hypothesis that (1) the CI sound processor generates recovered AM cues from broadband FM, and (2) CI users can use the recovered AM cues to recognize speech. The correlation between the intact and the recovered AM components at the output of the sound processor was also generally higher when the band number was low, supporting the consonant identification results. Moreover, CI subjects who were better at using recovered AM cues from broadband FM cues showed better identification performance with intact (unprocessed) speech stimuli. This suggests that speech perception performance variability in CI users may be partly caused by differences in their ability to use AM cues recovered from FM speech cues. 相似文献
10.
11.
《声学学报:英文版》2012,(4):482-488
The main goal of this study was to systematically investigate place-pitch perception in electrical hearing and the relative relationship between place-pitch perception ability,speech understanding and musical pitch discrimination by cochlear implant(CI) users.Electrode pitch ranking test was carried out to evaluate the place-pitch perception ability of CI users. Four post-lingually deafened CI users were recruited.They also participated in the speech recognition test and musical pitch discrimination test.Results showed that place pitch were generally ordered from apical to basal electrodes.The apical electrodes were judged lower in pitch than basal electrodes.Large individual difference was found.Comparing pitch and speech performance,the speech recognition result was related to the place-pitch perception ability of CI users,but this relationship was limited by the ceiling effects.However,a correlative relationship was found between musical pitch discrimination result and place-pitch ability of CI users.It indicated that the current signal processing of CI system can provide sufficient information for speech understanding but not for music perception of CI users.To a certain extent,music perception of CI users was determined by their place-pitch abilities. 相似文献
12.
Melodic contour identification was measured in cochlear implant (CI) and normal-hearing (NH) subjects for piano samples processed by four bandpass filters: low (310-620 Hz), middle (620-2480 Hz), high (2480-4960 Hz), and full (310-4960 Hz). NH performance was near-perfect for all filter ranges and much higher than CI performance. The best mean CI performance was with the middle frequency range; performance was much better for some CI subjects with the middle rather than the full filter. These results suggest that acoustic filtering may reduce potential mismatches between fundamental frequencies and harmonic components thereby improving CI users' melodic pitch perception. 相似文献
13.
van Hoesel RJ 《The Journal of the Acoustical Society of America》2007,121(4):2192-2206
Various measures of binaural timing sensitivity were made in three bilateral cochlear implant users, who had demonstrated moderate-to-good interaural time delay (ITD) sensitivity at 100 pulses-per-second (pps). Overall, ITD thresholds increased at higher pulse rates, lower levels, and shorter durations, although intersubject differences were evident. Monaural rate-discrimination thresholds, using the same stimulation parameters, showed more substantial elevation than ITDs with increased rate. ITD sensitivity with 6000 pps stimuli, amplitude-modulated at 100 Hz, was similar to that with unmodulated pulse trains at 100 pps, but at 200 and 300 Hz performance was poorer than with unmodulated signals. Measures of sensitivity to binaural beats with unmodulated pulse-trains showed that all three subjects could use time-varying ITD cues at 100 pps, but not 300 pps, even though static ITD sensitivity was relatively unaffected over that range. The difference between static and dynamic ITD thresholds is discussed in terms of relative contributions from initial and later arriving cues, which was further examined in an experiment using two-pulse stimuli as a function of interpulse separation. In agreement with the binaural-beat data, findings from that experiment showed poor discrimination of ITDs on the second pulse when the interval between pulses was reduced to a few milliseconds. 相似文献
14.
The purpose of this study was to develop and validate a method of estimating the relative "weight" that a multichannel cochlear implant user places on individual channels, indicating its contribution to overall speech recognition. The correlational method as applied to speech recognition was used both with normal-hearing listeners and with cochlear implant users fitted with six-channel speech processors. Speech was divided into frequency bands corresponding to the bands of the processor and a randomly chosen level of corresponding filtered noise was added to each channel on each trial. Channels in which the signal-to-noise ratio was more highly correlated with performance have higher weights, and conversely, channels in which the correlations were smaller have lower weights. Normal-hearing listeners showed approximately equal weights across frequency bands. In contrast, cochlear implant users showed unequal weighting across bands, and varied from individual to individual with some channels apparently not contributing significantly to speech recognition. To validate these channel weights, individual channels were removed and speech recognition in quiet was tested. A strong correlation was found between the relative weight of the channel removed and the decrease in speech recognition, thus providing support for use of the correlational method for cochlear implant users. 相似文献
15.
Bilateral cochlear implant (BiCI) users gain an advantage in noisy situations from a second implant, but their bilateral performance falls short of normal hearing listeners. Channel interactions due to overlapping electrical fields between electrodes can impair speech perception, but its role in limiting binaural hearing performance has not been well characterized. To address the issue, binaural masking level differences (BMLD) for a 125 Hz tone in narrowband noise were measured using a pair of pitch-matched electrodes while simultaneously presenting the same masking noise to adjacent electrodes, representing a more realistic stimulation condition compared to prior studies that used only a single electrode pair. For five subjects, BMLDs averaged 8.9 ± 1.0 dB (mean ± s.e.) in single electrode pairs but dropped to 2.1 ± 0.4 dB when presenting noise on adjacent masking electrodes, demonstrating a negative impact of the additional maskers. Removing the masking noise from only the pitch-matched electrode pair not only lowered thresholds but also resulted in smaller BMLDs. The degree of channel interaction estimated from auditory nerve evoked potentials in three subjects was significantly and negatively correlated with BMLD. The data suggest that if the amount of channel interactions can be reduced, BiCI users may experience some performance improvements related to binaural hearing. 相似文献
16.
Visram AS Azadpour M Kluk K McKay CM 《The Journal of the Acoustical Society of America》2012,131(5):4042-4050
This study investigated which acoustic cues within the speech signal are responsible for bimodal speech perception benefit. Seven cochlear implant (CI) users with usable residual hearing at low frequencies in the non-implanted ear participated. Sentence tests were performed in near-quiet (some noise on the CI side to reduce scores from ceiling) and in a modulated noise background, with the implant alone and with the addition, in the hearing ear, of one of four types of acoustic signals derived from the same sentences: (1) a complex tone modulated by the fundamental frequency (F0) and amplitude envelope contours; (2) a pure tone modulated by the F0 and amplitude contours; (3) a noise-vocoded signal; (4) unprocessed speech. The modulated tones provided F0 information without spectral shape information, whilst the vocoded signal presented spectral shape information without F0 information. For the group as a whole, only the unprocessed speech condition provided significant benefit over implant-alone scores, in both near-quiet and noise. This suggests that, on average, F0 or spectral cues in isolation provided limited benefit for these subjects in the tested listening conditions, and that the significant benefit observed in the full-signal condition was derived from implantees' use of a combination of these cues. 相似文献
17.
APEX, an acronym for computer Application for Psycho-Electrical eXperiments, is a user friendly tool used to conduct psychophysical experiments and to investigate new speech coding algorithms with cochlear implant users. Most common psychophysical experiments can be easily programmed and all stimuli can be easily created without any knowledge of computer programing. The pulsatile stimuli are composed off-line using custom-made MATLAB (Registered trademark of The Mathworks, Inc., http://www.mathworks.com) functions and are stored on hard disk or CD ROM. These functions convert either a speech signal into a pulse sequence or generate any sequence of pulses based on the parameters specified by the experimenter. The APEX personal computer (PC) software reads a text file which specifies the experiment and the stimuli, controls the experiment, delivers the stimuli to the subject through a digital signal processor (DSP) board, collects the responses via a computer mouse or a graphics tablet, and writes the results to the same file. At present, the APEX system is implemented for the LAURA (Registered trademark of Philips Hearing Implants) cochlear implant. However, the concept-and many parts of the system-is portable to any other device. Also, psycho-acoustical experiments can be conducted by presenting the stimuli acoustically through a sound card. 相似文献
18.
Liu C Galvin J Fu QJ Narayanan SS 《The Journal of the Acoustical Society of America》2008,123(5):2836-2847
In cochlear implants (CIs), different talkers often produce different levels of speech understanding because of the spectrally distorted speech patterns provided by the implant device. A spectral normalization approach was used to transform the spectral characteristics of one talker to those of another talker. In Experiment 1, speech recognition with two talkers was measured in CI users, with and without spectral normalization. Results showed that the spectral normalization algorithm had small but significant effect on performance. In Experiment 2, the effects of spectral normalization were measured in CI users and normal-hearing (NH) subjects; a pitch-stretching technique was used to simulate six talkers with different fundamental frequencies and vocal tract configurations. NH baseline performance was nearly perfect with these pitch-shift transformations. For CI subjects, while there was considerable intersubject variability in performance with the different pitch-shift transformations, spectral normalization significantly improved the intelligibility of these simulated talkers. The results from Experiments 1 and 2 demonstrate that spectral normalization toward more-intelligible talkers significantly improved CI users' speech understanding with less-intelligible talkers. The results suggest that spectral normalization using optimal reference patterns for individual CI patients may compensate for some of the acoustic variability across talkers. 相似文献
19.
Thresholds for detecting sinusoidal amplitude modulation (AM) of a wideband noise carrier were measured as a function of the duration of the modulating signal. The carrier was either; (a) gated with a duration that exceeded the duration of modulation by the combined stimulus rise and fall times; (b) presented with a fixed duration that included a 500-ms carrier fringe preceding the onset of modulation; or (c) on continuously. In condition (a), the gated-carrier temporal modulation transfer functions (TMTFs) exhibited a bandpass characteristic. For AM frequencies above the individual subject's TMTF high-pass segment, the mean slope of the integration functions was - 7.46 dB per log unit duration. For the fringe and continuous-carrier conditions [(b) and (c)], the mean slopes of the integration functions were, respectively, - 9.30 and - 9.36 dB per log unit duration. Simulations based on integration of the output of an envelope detector approximate the results from the gated-carrier conditions. The more rapid rates of integration obtained in the fringe and continuous-carrier conditions may be due to "overintegration" where, at brief modulation durations, portions of the unmodulated carrier envelope are included in the integration of modulating signal energy. 相似文献
20.
K I Kirk N Tye-Murray R R Hurtig 《The Journal of the Acoustical Society of America》1992,91(6):3487-3498
Multichannel cochlear implant users vary greatly in their word-recognition abilities. This study examined whether their word recognition was related to the use of either highly dynamic or relatively steady-state vowel cues contained in /bVb/ and /wVb/ syllables. Nine conditions were created containing different combinations of formant transition, steady-state, and duration cues. Because processor strategies differ, the ability to perceive static and dynamic information may depend on the type of cochlear implant used. Ten Nucleus and ten Ineraid subjects participated, along with 12 normal-hearing control subjects. Vowel identification did not differ between implanted groups, but both were significantly poorer at identifying vowels than the normal-hearing group. Vowel identification was best when at least two kinds of cues were available. Using only one type of cue, performance was better with excised vowels containing steady-state formants than in "vowelless" syllables, where the center vocalic portion was deleted and transitions were joined. In the latter syllable type, Nucleus subjects identified vowels significantly better when /b/ was the initial consonant; the other two groups were not affected by specific consonantal context. Cochlear implant subjects' word-recognition was positively correlated with the use of dynamic vowel cues, but not with steady-state cues. 相似文献