共查询到18条相似文献,搜索用时 78 毫秒
1.
《分析科学学报》2021,37(5)
建立了衍生化-分散液液微萃取-气相色谱/质谱(DLLME-GC/MS)方法,并将其用于纺织固体废物中18种含氯苯酚和邻苯基苯酚的分析检测。方法对衍生化体系、乙酸酐用量、衍生化温度和时间、萃取剂种类及用量、分散剂种类及用量进行了筛选和优化。确定最佳条件为:纺织固体废物样品用0.15 mol/L的K_2CO_3溶液超声提取后定容,加入0.12 mL乙酸酐,于温度60℃条件下衍生35 min,取6 mL样品提取液,加入0.7 mL体积比为2∶5的四氯化碳(提取剂)和丙酮(分散剂)的混合溶剂分散萃取后,于8 000 r/min下离心3 min,取下层有机相进行GC/MS分析。18种含氯苯酚和邻苯基苯酚在0.002~0.160 mg/L范围内均呈良好的线性关系,相关系数为0.9991~1.0000,检出限为0.07~0.76μg/kg,定量限为0.28~3.04μg/kg,样品加标回收率在84.2%~105.0%范围,相对标准偏差在0.6%~6.4%之间。该方法简单、灵敏,适用于纺织固体废物中18种含氯苯酚和邻苯基苯酚的分析。 相似文献
2.
分散液液微萃取-气相色谱-质谱分析葡萄酒中单萜醇 总被引:1,自引:0,他引:1
采用分散液液微萃取与气相色谱-质谱(GC-MS)联用技术建立了葡萄酒中单萜醇(α-萜烯醇、芳樟醇、香叶醇、香茅醇)的分析方法.考察萃取剂与分散剂的种类和体积、超声和离心时间、盐的加入量、酒样中乙醇含量等因素对萃取效率的影响,确定最佳萃取条件为:在10 mL葡萄酒样中加入2,6-二叔丁基-4-甲基苯酚(BHT)作为内标,再加入100 μL四氯化碳与500 μL丙酮,超声3 min(40 MHz),再离心10 min(5000 r/min)后吸取有机相进行GC-MS分析.用此条件检测4种单萜醇,线性范围为10 ~ 300 μg/L,相关系数均大于0.996,检出限为6~8μg/L.实际葡萄酒样加标回收率为90.8% ~96.1%,相对标准偏差为4.8%~5.6%(n=6).本方法具有操作简单、快速、灵敏、低成本、环境友好等特点,非常适合大批量样品分析. 相似文献
3.
为了快速准确的测定水中多种多氯联苯(Polychlorinated Biphenyls, PCBs),建立了分散液液微萃取(Dispersive Liquid-Liquid Microextraction, DLLME)与气相色谱-质谱联用,快速测定水中20种PCBs的新方法。方法以二氯甲烷(20μL)为萃取剂,丙酮(1.0 mL)为分散剂,混匀后注入10.0 mL水样中,以4℃、8 000 r/min离心10 min,吸取下层有机相10μL,加入0.2μL内标后进样分析。结果表明,在最佳条件下,20种PCBs能够被充分提取和良好分离。在10.0~500μg/L浓度范围内呈现良好的线性关系,线性相关系数为0.999,检出限为0.7~1.8μg/L。对水样进行20、100、450μg/L的加标实验,相对标准偏差与回收率分别在1.6%~9.7%与72.0%~115%之间,能够满足环境水样中PCBs的测定要求。 相似文献
4.
以四氯乙烯作萃取剂,以四氢呋喃为分散剂对水样中4种环境激素甲草胺、乙草胺、三唑酮和三唑醇进行分散液液微萃取。提取液用气相色谱-质谱法测定。4种环境激素的质量浓度与其相应峰面积均在0.05~100μg.L-1范围内呈线性关系。甲草胺、乙草胺、三唑酮和三唑醇的检出限(3S/N)分别为0.016,0.015,0.023,0.032μg.L-1。在0.2,2.0mg.kg-1两个添加水平下进行回收试验,4种环境激素的回收率在86.8%~118%之间,测定值的相对标准偏差(n=6)在2.1%~6.2%之间。 相似文献
5.
分散液液微萃取-气相色谱-串联质谱快速分析食用油中的酚类抗氧化剂 总被引:1,自引:0,他引:1
基于分散液液微萃取技术和气相色谱-串联质谱,建立了一种快速分析食用油中酚类抗氧化剂的新方法。对影响萃取效果的重要因素,如萃取剂种类及体积、分散剂种类及体积和萃取时间等进行了详细优化。优化条件为:500μL甲醇-乙腈(1:1, V/V)快速注射进3.0 mL 正己烷与1.0 g食用油的混合物中,并振荡萃取10 s 。在优化条件下,方法的线性范围为10~2000 ng/g,检出限为1.5~2.4 ng/g,相对标准偏差为4.0%~8.3%。将本方法应用于4种不同食用油样品的分析,其中3种有酚类抗氧化剂检出,样品加标回收率为81.9%~118%,结果满意。 相似文献
6.
分散液-液微萃取-气相色谱-质谱法同时测定中毒样品中有毒生物碱和鼠药 总被引:3,自引:0,他引:3
建立了分散液-液微萃取(Dispersive liquid-liquid micro-extraction,DLLME)与气相色谱-质谱(GCMS)联用同时测定中毒样品中3种鼠药(毒鼠强、溴鼠灵、溴敌隆)和5种有毒生物碱(莨菪碱、东莨菪碱碱、钩吻碱、士的宁、马钱子碱)的方法。100μL萃取剂氯仿与600μL分散剂甲醇混合后,迅速注入样品,萃取过程在乳化体系中完成;以8000 r/min离心5 min,使两相分层,取下层有机相进行GC-MS分析。考察了萃取剂、分散剂的种类和体积、萃取时间、pH值及盐浓度对萃取效率的影响。在优化条件下,各目标物在水样、尿样、黄酒样的检出限为0.003~1.0μg/L,在米饭样品检出限为0.002~0.2μg/kg;各目标物低、中、高加标回收率为81.0%~110%,精密度均小于7%。本方法灵敏度高,快捷高效,适用于中毒样品中有毒生物碱和鼠药的同时测定。 相似文献
7.
建立了液液萃取-分散液液微萃取-气相色谱-质谱联用技术测定纺织废水中痕量偶氮染料的方法。废水中的偶氮染料在碱性条件下经连二亚硫酸钠还原成芳香胺后,先用叔丁基甲醚液液萃取、盐酸反萃进行预浓缩及净化;再以乙腈-氯苯体系进行分散液液微萃取,气相色谱-质谱测定。对前处理条件进行了优化,考察了酸碱度及盐效应对芳香胺萃取效率的影响,结果表明:液液萃取过程中加入30 g NaCl,分散液液微萃取过程中加入1 mL 5 mol/L的NaOH调节体系至碱性才能达到较好的萃取效率。在优化的实验条件下,21种目标物均呈现良好的线性关系,其中13种芳香胺的线性范围为0.05~10μg/L, 7种芳香胺的线性范围为0.05~5μg/L, 2,4-二氨基苯甲醚的线性范围为20~100μg/L,相关系数为0.996~0.999。20种芳香胺的检出限可达0.05μg/L, 2,4-二氨基苯甲醚检出限为20μg/L。印染、机织、印花等实际废水加标试验表明,方法的回收率为75.6%~115.1%。该方法富集倍数高,检出限低,适用于纺织废水中痕量禁用偶氮染料的检测。 相似文献
8.
用分散液液微萃取-气相色谱/质谱法测定水样中的16种多环芳烃(PAHs)。通过实验确定最佳萃取条件为:20μL四氯化碳作萃取剂,1.0 mL乙腈作分散剂,超声萃取1 min。在优化条件下,多环芳烃的富集倍数达到216~511,方法在0.05~50μg/L范围内呈良好的线性关系,相关系数(R2)在0.9873~0.9983之间,检出限为0.0020~0.14μg/L。相对标准偏差(RSD)在3.82%~12.45%(n=6)之间。该方法成功用于实际水样中痕量多环芳烃的测定。 相似文献
9.
为实现小体积环境水样中酚类化合物的准确、快速、高灵敏测定,通过分散液液微萃取(DLLME)和荧光衍生化的结合,建立了高效液相色谱-荧光检测(HPLC-FLD)双酚A、壬基酚、辛基酚和对特辛基酚的分析方法。考察并优化了DLLME和衍生化条件,结果表明,最优的DLLME条件为萃取剂氯仿用量70μL,分散剂乙腈用量400μL,漩涡振荡3 min,高速离心2 min。以2-[2-(7 H-二苯并[a,g]咔唑-乙氧基)]-乙基氯甲酸酯(DBCEC-Cl)为柱前衍生试剂,在pH10.5的Na2CO3-NaHCO3缓冲液/乙腈溶液、50℃下衍生反应3 min得到稳定的衍生产物,于10min内实现了4种酚衍生物的分离。方法的检出限为0.9~1.6 ng/L,定量限为3.8~7.1 ng/L,具有良好的线性、精密度和回收率,与以往报道的方法相比具有一定的优势和实用性,可用于造纸厂废水、湖水、生活废水、自来水中4种酚类内分泌干扰物的测定。 相似文献
10.
分散液-液微萃取-气相色谱/质谱联用法测定机械加工水基切削液及其废水中的三氯苯 总被引:4,自引:0,他引:4
建立了以丙酮为分散剂、氯苯为萃取剂,采用分散液-液微萃取、气相色谱/选择离子质谱联用测定机械加工水基切削液及其废水中三氯苯的方法。该方法与顶空萃取、液-液萃取和固相萃取结合气相色谱/电子捕获检测法相比,具有线性范围广、富集倍数高、重现性好、操作简便、干扰小等优点。样品中三氯苯的加标回收率为94.7%~104.3%,相对标准偏差为2.3%~7.8%。三氯苯的3种同分异构体1,3,5-,1,2,4-和1,2,3-三氯苯的检出限分别为2.0,6.0和3.0 μg/L。重点探讨了萃取剂和分散剂的种类、体积、萃取时间和盐效应等对三氯苯萃取效率的影响,优化了萃取条件。考察了机械加工水基切削液中常用的添加剂对检测结果的影响,结果表明1.0%的亚硝酸钠和聚乙二醇对三氯苯的检测基本无影响。采用该方法对4种实际样品中的三氯苯进行了测定,其中两个样品中含有三氯苯,质量浓度范围为0.15~1.67 mg/L。 相似文献
11.
分散液液微萃取/气相色谱-质谱法测定蜂蜜中六六六和滴滴涕类农药残留 总被引:1,自引:0,他引:1
建立了分散液液微萃取(DLLME)与气相色谱-质谱法(GC-MS)联用快速检测蜂蜜中六六六(BHC)和滴滴涕(DDT)类农药残留的分析方法.使用三氯甲烷为萃取剂,通过涡旋、离心使分析物富集到微量三氯甲烷中,采用气相色谱-质谱进行分析.实验对影响DLLME萃取效率的因素,如萃取剂种类和体积、分散剂种类和体积、萃取时间等进行了考察,同时对方法的基质效应和性能进行了评估.结果显示:由于基质效应,8种六六六和滴滴涕类农药都出现信号增强现象.8种六六六和滴滴涕类农药在2~500 μg/L范围内线性关系良好,相关系数(r2)为0.991~0.998,方法富集倍数为74~96;当试样的加标水平为20、50和100 μg/kg时,8种六六六和滴滴涕类农药的回收率为61.0%~100.1%,相对标准偏差(RSD, n=5)为2.2%~19.5%.8种六六六和滴滴涕类农药的最低检测浓度均为20 μg/kg,最小检出量皆为1.0 ng.该方法简单、快速、高效,适用于蜂蜜中六六六和滴滴涕类农药的残留检测. 相似文献
12.
建立了分散液-液微萃取与气相色谱-质谱联用同时测定环境水样中痕量2,4-二硝基甲苯和磷酸三(2-氯乙基)酯的新方法。对影响萃取效率的因素进行了详细的考察和优化,确定采用的最佳萃取条件为: 将0.8 mL乙醇和60 μL氯仿的混合溶液快速注入5.0 mL的样品溶液中,振动混匀120 s后,离心分离,吸取沉积在试管底部的氯仿相直接进样分析。该方法对磷酸三(2-氯乙基)酯和2,4-二硝基甲苯的检出限(信噪比为3)分别为0.01和0.04 μg/L,富集倍数分别为96.6和127.5;两种物质的线性范围达3到4个数量级;日内和日间测定的相对标准偏差(RSDs, n=6)分别为8.6%~11.5%和8.9%~12.0%。将该方法用于环境水样中2,4-二硝基甲苯和磷酸三(2-氯乙基)酯的分析,其加标回收率为102.1%~110.9%。方法具有操作简单、方便快速、灵敏度高、无交叉污染和环境友好等优点。 相似文献
13.
In the present study, a rapid, highly efficient and environmentally friendly sample preparation method named temperature-controlled ionic liquid dispersive liquid-phase microextraction (TC-IL-DLPME), followed by high performance liquid chromatography (HPLC) was developed for the extraction, preconcentration and determination of four benzophenone-type ultraviolet (UV) filters (viz. benzophenone (BP), 2-hydroxy-4-methoxybenzophenone (BP-3), ethylhexyl salicylate (EHS) and homosalate (HMS)) from water samples. An ultra-hydrophobic ionic liquid (IL) 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM][FAP]), was used as the extraction solvent in TC-IL-DLPME. Temperature served two functions here, the promotion of the dispersal of the IL to the aqueous sample solution to form infinitesimal IL drops and increase the interface between them and the target analytes (at high temperature), and the facilitation of mass transfer between the phases, and achievement of phase separation (at low temperature). Due to the ultra-hydrophobic feature and high density of the extraction solvent, complete phase separation could be effected by centrifugation. Moreover, no disperser solvent was required. Another prominent feature of the procedure was the combination of extraction and centrifugation in a single step, which not only greatly reduced the total analysis time for TC-IL-DLPME but also simplified the sample preparation procedure. Various parameters that affected the extraction efficiency (such as type and volume of extraction solvent, temperature, salt addition, extraction time and pH) were evaluated. Under optimal conditions, the proposed method provided good enrichment factors in the range of 240–350, and relative standard deviations (n = 5) below 6.3%. The limits of detection were in the range of 0.2–5.0 ng/mL, depending on the analytes. The linearities were between 1 and 500 ng/mL for BP, 5 and 1000 ng/mL for BP-3, 10 and 1000 ng/mL for HMS and 5 and 1000 ng/mL for EHS. Finally, the proposed method was successfully applied to the determination of UV filters in swimming pool and tap water samples and acceptable relative recoveries over the range of 88.0–116.0% were obtained. 相似文献
14.
气相色谱-质谱法测定水体中5种典型有机紫外防晒剂 总被引:1,自引:0,他引:1
建立了水体中5种典型有机紫外防晒剂甲氧基肉桂酸乙基己酯(ethylhexyl methoxycinnamate,EHMC)、二苯酮-3(benzophenone-3,BP-3)、4-甲基苄亚基樟脑(4-methylbenzylidene camphor,4-MBC)、奥克立林(octocrylene,OC)和胡莫柳酯(homosalate,HMS)的气相色谱-质谱检测方法。对HMS、BP-3衍生化条件进行了系统的优化。以100 μL双(三甲基硅烷基)三氟乙酰胺(N,O-bis(trimethylsilyl) trifluoroacetamide,BSTFA)为衍生化试剂,在100 ℃下反应100 min。水样固相萃取选用Oasis HLB萃取柱(0.5 g),洗脱溶剂为乙酸乙酯-二氯甲烷(1:1,v/v),水样pH 3~5。该方法对5种化合物的检出限范围为0.5~1.2 ng/L,定量限范围为1.4~4.0 ng/L。最佳实验条件下,加标水样回收率为87.85%~102.34%,相对标准偏差(n=3)均小于5%。该方法成功地应用于昆明市第一污水厂进出口水样中目标物质的分析。 相似文献
15.
建立了生物样品中8种毒品的超声辅助分散液液微萃取-气相色谱-三重四极杆串联质谱检测方法,采用密度比水低的有机溶剂甲苯作为萃取溶剂,萃取过程中不需要任何分散剂。对影响萃取富集效率的因素进行优化:将100 μL甲苯萃取剂加入到1 mL样品溶液中,超声波剧烈振荡使甲苯充分分散到样品溶液中进行萃取,离心分层后,抽取上层萃取剂供气相色谱-三重四极杆串联质谱分析检测。在优化条件下,分析物在各自的线性范围内具有良好的线性关系,线性相关系数在0.9984~0.9994之间;检出限为0.05~0.40 μg/L (S/N=3);样品加标回收率在79.3%~100.3%之间,RSD<5.7%。本方法具有操作简单、灵敏度高和重现性好等优点,可应用于生物样品中多种毒品的分析检测。 相似文献
16.
17.
A new method based on dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography (HPLC) has been developed for the analysis of UV filters. A specially designed flask, which has two narrow open necks with one of them having a capillary tip, was employed to facilitate the DLLME process. By adopting such a device, the extraction and subsequent phase separation were conveniently achieved. A binary solvent system of water sample and low-density extraction solvent (1-octanol) was used for the DLLME and no disperser solvent was involved. The extraction was accelerated by magnetic agitation of the two phases. After extraction, phase separation of the extraction solvent from the aqueous sample was easily achieved by leaving the extraction system statically for a while. No centrifugation step involving in classical DLLME was necessary. The analyte-enriched phase, floating above the sample solution, was elevated and concentrated into the narrow open tip of the flask by adding pure water into it via the other port, which was withdrawn with a microsyringe for the subsequent HPLC analysis. Under the optimized conditions, the limits of detection for the analytes were in range of 0.2-0.8 ng mL−1 .The linearity ranges were 8-20,000 ng mL−1 for HB, 7-20,000 ng mL−1 for DB, 8-10,000 ng mL−1 for BP and 5-20,000 ng mL−1 for HMB, respectively. Enrichment factors ranging from 59 to 107 folders were obtained for the analytes. The relative standard deviations (n = 3) at a spiked level of 80 ng mL−1 were between 1.4 and 4.8%. The proposed magnetic stirring-assisted DLLME method was successfully applied to the analysis of lake water samples. 相似文献