首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An initial value investigation is made of the motion of an incompressible, viscous conducting fluid with embedded small spherical particles bounded by an infinite rigid non-conducting plate. Both the plate and the fluid are in a state of solid body rotation with constant angular velocity about an axis normal to the plate. The flow is generated in the fluid-particle system due to non-torsional oscillations of a given frequency superimposed on the plate in the presence of a transverse magnetic field. The operational method is used to derive exact solutions for the fluid and the particle velocities, and the wall shear stress. The small and the large time behaviour of the solutions is discussed in some detail. The ultimate steady-state solutions and the structure of the associated boundary layers are determined with physical implications. It is shown that rotation and magnetic field affect the motion of the fluid relatively earlier than that of the particles when the time is small. The motion for large times is set up through inertial oscillations of frequency equal to twice the angular velocity of rotation. The ultimate boundary layers are established through inertial oscillations. The shear stress at the plate is calculated for all values of the frequency parameter. The small and large-time behaviour of the shear stress is discussed. The exact solutions for the velocity of fluid and the wall shear stress are evaluated numerically for the case of an impulsively moved plate. It is found that the drag and the lateral stress on the plate fluctuate during the non-equilibrium process of relaxation if the rotation is large. The present analysis is very general in the sense that many known results in various configurations are found to follow as special cases.  相似文献   

2.
Oscillatory channel flow in a rotating system is considered. The Navier–Stokes equations reduce to the Ekman equations that are solved exactly. The results show the interaction between oscillation frequency and rotation rate. Resonance occurs when the oscillation frequency is twice the rotation rate.  相似文献   

3.
Hydromagnetic flow between two porous disks rotating with same angular velocity Ω about two noncoincident axes has been studied in the presence of a uniform transverse magnetic field. An exact solution of the governing equations has been obtained in a closed form. It is found that the primary velocity f/Ωl increases and the secondary velocity g/Ωl decreases with increase in either Reynolds number Re or the Hartman number M. It is also found that the torque at the disk η= 0 increases with increase in either M^2 or K^2. On the other hand there is no torque at the disk η= 1 for large M^2 and K^2. The heat transfer characteristic has also been studied on taking viscous and Joule dissipation into account. It is seen that the temperature increases with increase in either M^2 or K^2. It is found that the rate of heat transfer at the disk η= 0 increases with increase in either M or K. On the other hand the rate of heat transfer at the disk η= 1 increases with increase in K but decreases with increase in M.  相似文献   

4.
The starting flow due to a suddenly applied pressure gradient in a parallel plate channel which is rotating as a system is studied. Exact analytic series solutions to the unsteady Navier-Stokes equations are found by both the Laplace transform method and the separation of parameters method, the latter is shown to be superior. Rotation not only induces a secondary transverse flow but also alters the character of the transient flow rate and velocity profiles. Back flow and inertial oscillations occur, especially at higher rotation rates.  相似文献   

5.
Laminar flow in a channel rotating about a transverse axis has been studied numerically [1–3] and analytically [4–7] at small Reynolds numbers. The drag coefficient of rotating channels with straight and curvilinear axes has been measured [4, 8, 9]. The present paper gives the results of an experimental investigation into the kinematics of water flow in a channel rotating with different intensities. The flow was visualized by means of hydrogen bubbles and a dye. A study was made of the process of flow separation in a rapidly rotating channel into a core with homogeneous velocity distribution in the direction parallel to the rotation axis and thin shear layers on the walls normal to this axis. The values of the dimensionless numbers were found that correspond to flow rearrangement accompanied by formation of longitudinally oriented vortex structures in the region of higher pressure, and also the values of the rotation parameter needed for the almost complete suppression of turbulence in the region of lower pressure. A general analysis is made of the forms of instability in the different regions of the flow and of the possible flow regimes in a rotating channel.  相似文献   

6.
An analytical three-dimensional solution to the fluid flow problem through heterogeneous porous media in a rotating square channel is presented. The permeability of the fluid saturated porous domain varies in the vertical direction, thus affecting the imposed main flow in the channel. As a result of Coriolis acceleration, secondary circulation in a plane perpendicular to the main flow direction is created. A particular example of a monotonic distribution of the permeability function is analyzed leading to a single vortex secondary circulation. Nevertheless, multiple vortex secondary flow solutions are possible depending on the particular variation of the permeability in the vertical direction. No secondary motion is expected for isothermal flows in homogeneous porous media.  相似文献   

7.
The problem of convection induced by radial buoyancy in an electrically conducting fluid contained by a rotating cylindrical annulus (angular frequency, ) in the presence of a homogeneous magnetic field (B) in the azimuthal direction is considered. The small gap approximation is used together with rigid cylindrical boundaries. The onset of convection occurs in the form of axial, axisymmetric or oblique rolls. The angle between the roll axis and the axis of rotation depends of the ratio between the Chandrasekhar number, QB2, and the Coriolis number, . Fully three-dimensional numerical simulations as well as Galerkin representations for roll patterns including the subsequent stability analysis are used in the theoretical investigation. At finite amplitudes, secondary transitions to 3D-hexarolls and to spatio-temporal chaos are found. Overlapping regions of pattern stability exist such that the asymptotically realized state may depend on the initial conditions. PACS 47.27.-i, 47.65.+a  相似文献   

8.
9.
A numerical study is conducted on the effect of sidewall heating in the pressure-driven laminar flow of an incompressible viscous fluid through a rectangular channel that is subjected to a spanwise rotation. The time-dependent Navier-Stokes equations are solved along with the conservation equations for energy and mass by a finite-difference technique. The effect of weak to moderate sidewall heating on the overall flow structure at different rotation rates is studied. It is observed that for weak sidewall heating, the secondary flow structure is quite similar to the corresponding isothermal case. However, when the sidewall heating is moderate, various types of secondary flow fields are found to occur depending on the magnitude of the rotation. The influence of rotational speed on the net heat transport for different levels of sidewall heating is also studied. It is found that when the sidewall heating is weak, the basic secondary flow structure for the non-rotating case is of a unicellular form and an increase in the rotation speed leads to an increase in the net heat transfer due mainly to the rotationally driven transport of fluid from the high temperature to the low temperature region. On the other hand, when the sidewall heating is moderate so that the basic secondary flow structure for the non-rotating case has a multicellular configuration, an increase in the rotation speed leads to a decrease in the heat transport due to the weakening of the shear layer near the hot wall.  相似文献   

10.
Laminar flow in a rotating rectangular channel with suction through one or more of the permeable walls is studied. The conditions under which a two-dimensional formulation of the flow core calculations is possible are discussed and the corresponding problem is formulated. Calculation results illustrating the combined effect of suction and rotation about the transverse axis are presented for a channel with a stopped end. Leningrad. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 30–34, September–October, 1988.  相似文献   

11.
12.
 Results are presented from a series of experiments in which the performance of a new type of rotating, stratified (two-layer) channel flow facility has been tested. The flow within the channel is driven by a source-sink system and is designed specifically to provide uniform, rectilinear, horizontal motion and relatively-quiescent conditions in the upper and lower layers respectively of the two-layer configuration. The channel is shown to perform well in this regard over a wide range of external forcing conditions, with negligible erosion of the diffusive interface separating the two constituent (miscible) homogeneous layers over periods that are long compared with the time scale of a typical laboratory experiment. Received: 22 January 1996/Accepted: 23 November 1998  相似文献   

13.
Uniformly valid solutions are obtained for the hydromagnetic flow at a moving plate and at an oscillating plate. In each case, two different representations for the solution are presented. On one representation a half order fractional operator is used, whereas the other representation did not rely on fractional operator. Solutions for special cases of the oscillating plate are calculated for finite times. Furthermore, the effects of the nondimensional numbers M (the magnetic parameter), Re (the suction Reynolds number) on the flow are compared with the existing results and are discussed.  相似文献   

14.
Analysis of hydromagnetic flow of a dusty fluid over a stretching sheet is carried out with a view to throw adequate light on the effects of fluid-particle interaction, particle loading, and suction on the flow characteristics. The equations of motion are reduced to coupled non-linear ordinary differential equations by similarity transformations. These coupled non-linear ordinary differential equations are solved numerically on an IBM 4381 with double precession, using a variable order, variable step-size finite-difference method. The numerical solutions are compared with their approximate solutions, obtained by a perturbation technique. For small values of β the exact (numerical) solution is in close agreement with that of the analytical (approximate) solution. It is observed that, even in the presence of a transverse magnetic field and suction, the transverse velocity of both the fluid and particle G phases decreases with an increase in the fluid-particle interaction parameter, β, or the particle-loading parameter, k. Moreover, the particle density is maximum at the surface of the stretching sheet, and the shearing stress increases with an increase in β or k.  相似文献   

15.
Visualizing the flow in the meridional plane of a rotating circular pipe has revealed two interesting three-dimensional hydrodynamic effects. The first is the unsteady process that follows the sudden stopping of the rotation, including the appearance on the inner surface of periodic localized inhomogeneities. These grow differently in the axial and radial directions with the eventual formation of mushroom-like structures; this process can be qualitatively explained in terms of the theory of unsteady Görtler vortices [1]. The second effect is the establishment of an unusual extended stable periodic structure as the rotating channel, initially open at one end, is closed off by a fixed plate, leaving a small gap between the plate and the end of the pipe for air to flow into the pipe from the outside. This periodic structure consists of volumes with a closed circulating flow alternating with open volumes hydrodynamically communicating with each other and the end of the pipe through wall flow zones. Simple relations are proposed for some of the characteristics of the periodic structure detected.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 35–40, March–April, 1993.In conclusion, the authors wish to express their gratitude to Dr. Yu. G. Gurevich for his assistance and helpful discussion of the results obtained in Sec. 2.  相似文献   

16.
In the present study, the regionally-averaged heat transfer coefficients and flow temperature distributions were measured in an equilateral triangular channel with three different rib arrangements (α = 45, 90 and 135°). To measure regionally-averaged heat transfer coefficients in the channel, two rows of copper blocks and a single heater were installed on two ribbed walls. The fluid temperature distributions were obtained using a thermocouple-array. The rotation number ranged from 0.0 to 0.1 with a fixed Reynolds number of 10,000. For the 90° ribs, the heat transfer coefficients on the pressure side surface were increased significantly with rotation, while the suction side surface had lower heat transfer coefficients than the stationary channel. For the angled ribs, rib-induced secondary flow dominated the heat transfer characteristics and high heat transfer rates were observed on the regions near the inner wall for the 45° angled ribs and near the leading edge for the 135° angled ribs.  相似文献   

17.
Summary Fluctuating flow of a viscous fluid rotating over a disk whose angular velocity oscillates about a nonzero mean is investigated. Initially the disk and the fluid rotate in the same sense with different angular velocities 1 and 2 ( 2> 1) and at a particular instant of time, the angular velocity of the disk becomes 1[1+ sin( )]. The problem is solved as an initial boundary value problem and it is found that for small values of the results of analytical and numerical methods are in excellent agreement. The effect of frequency parameter on surface skin frictions has been analysed for various values of angular velocity ratio s and amplitude parameter .
Fluktuierende Strömung in einer rotierenden Flüssigkeit
Übersicht Untersucht wird die fluktuierende Strömung einer viskosen Flüssigkeit, die über einer Scheibe, deren Winkelgeschwindigkeit um einen von Null verschiedenen Mittelwert schwankt, rotiert. Anfangs drehen sich die Scheibe und die Flüssigkeit gleichsinnig, aber mit verschiedenen Winkelgeschwindigkeiten 1 und 2 ( 2> 1). Zu einem Anfangszeitpunkt geht die Winkelgeschwindigkeit der Scheibe über in 1[1+ sin ( )]. Die Aufgabe wird als Anfangs-/Randwertproblem gelöst. Für kleine Werte stimmen die analytischen und numerischen Ergebnisse hervorragend überein. Für verschiedene Werte des Winkelgeschwindigkeitsverhältnisses und des Amplitudenparameters wurde der Einfluß des Frequenzparameters auf die Reibspannungen an der Scheibe untersucht.
  相似文献   

18.
An analysis is carried out to study the unsteady magnetohydrodynamic (MHD) two-dimensional boundary layer flow of a second grade viscoelastic fluid over an oscillatory stretching surface. The flow is induced due to an infinite elastic sheet which is stretched back and forth in its own plane. For the investigated problem, the governing equations are reduced to a non-linear partial differential equation by means of similarity transformations. This equation is solved both by a newly developed analytic technique, namely homotopy analysis method (HAM) and by a numerical method employing the finite difference scheme, in which a coordinate transformation is employed to transform the semi-infinite physical space to a bounded computational domain. The results obtained by means of both methods are then compared and show an excellent agreement. The effects of various parameters like visco-elastic parameter, the Hartman number and the relative frequency amplitude of the oscillatory sheet to the stretching rate on the velocity field are graphically illustrated and analysed. The values of wall shear stress for these parameters are also tabulated and discussed.  相似文献   

19.
The results of an experimental investigation of bifurcation phenomena in a laminar flow through a rotating square channel approximately 50 channel widths long are presented. A comparison with known results of the numerical modeling of bifurcations of developed steady-state flow is carried out. A map of the steady and unsteady flow regimes is plotted. The effect of artificially generated input perturbations on the conditions of onset of longitudinally oriented vortex structures in the neighborhood of the elevated-pressure side of channels of lesser length is investigated.St. Petersburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 87–93, March–April, 1996.  相似文献   

20.
A numerical solution to the problem of the three‐dimensional fluid flow in a long rotating heterogeneous porous channel is presented. A co‐ordinate transformation technique is employed to obtain accurate solutions over a wide range of porous media Ekman number values and consequent boundary layer thicknesses. Comparisons with an approximate asymptotic solution (for large values of Ekman number) and with theoretical predictions on the validity of Taylor–Proudman theorem in porous media for small values of Ekman number show good qualitative agreement. An evaluation of the boundary layer thickness is presented and a power‐law correlation to Ekman number is shown to well‐represent the results for small values of Ekman number. The different three‐dimensional fluid flow regimes are presented graphically, demonstrating the distinct variation of the flow field over the wide range of Ekman numbers used. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号