首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report characterization of pH-dependent behavior in polyelectrolyte multilayers (PEMs) fabricated from poly(allylamine) (PAH) and low molecular weight poly(acrylic acid) (PAA) synthesized by living/controlled polymerization. Exposure of these films to solutions of low pH (e.g. pH 2.0-3.2) resulted in transformations from films that were smooth and uniform to films with porous morphologies, as characterized by scanning electron microscopy (SEM). We observed large differences in both the extent of this transformation and the sizes of the pores that resulted compared to films fabricated using higher molecular weight PAA used in past studies. Whereas transformations reported in past studies generally lead to pores with sizes in the range of 0.3-2 μm, we observed larger-scale transformations and films with cell-like internal structures comprised of networks of closed pores, interconnected pores, and through-pores with sizes as large as 10-15 μm depending on pH and the manner in which the films were incubated. Films fabricated using fluorescently end-labeled samples of PAA permitted real-time imaging of changes in internal structure using confocal microscopy (LSCM). The results of these studies also revealed large differences in the nature of these transformations when films were placed in contact with surfaces as opposed to when dipped into aqueous solutions. Our results reveal approaches that can be used to fabricate films with large pores (e.g., pores with sizes on the order of 10-15 μm) and suggest methods that could potentially be used to generate PEMs having controlled gradients in pore size.  相似文献   

2.
Maleic anhydride (MA) grafted poly(lactic acid) (PLA) (PLA-g-MA) was synthesized from PLA. Proton nuclear magnetic resonance confirmed the grafting of the MA. PLA-g-MA and PLA were used to prepare polymeric nanoparticles. Particle size distributions were measured by dynamic light scattering, and colloidal stability was determined by (zeta) ζ-potential. The ζ-potential becomes more negative for PLA-g-MA than PLA nanoparticle dispersions, due to the presence of deprotonated carboxylic acid groups on the backbone of the PLA and confirms the MA grafting results. Maleic anhydride grafted on PLA backbone improves the covalent conjugation with ovalbumin (OVA) compared to OVA physically adsorbed on the particles. The chemical conjugation was carried out via amide linkages between the carboxylic groups of the nanoparticles, activated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, and the amino groups of the protein. The amount of protein conjugated was measured by using the bicinchoninic acid method and is threefold higher compared to the adsorbed OVA. Moreover, the PLA-g-MA nanoparticles increased the amount of conjugated OVA by 36 wt% compared to PLA nanoparticles. OVA adsorption and OVA conjugation provided colloidal dispersions with excellent stability.  相似文献   

3.
The objective of this article is to fabricate poly(lactic acid) (PLA) and nano silica (SiO2) composites and investigate effect of SiO2 on the properties of PLA composites. Surface‐grafting modification was used in this study by grafting 3‐Glycidoxypropyltrimethoxysilane (KH‐560) onto the surface of silica nanoparticles. The surface‐grafting reaction was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Then the hydrophilic silica nanoparticles became hydrophobic and dispersed homogeneously in PLA matrix. Scanning electron microscope and Dynamic thermomechanical analysis (DMA) results revealed that the compatibility between PLA and SiO2 was improved. Differential scanning calorimetry and polarized optical microscope tests showed that nano‐silica had a good effect on crystallization of PLA. The transparency analysis showed an increase in transparency of PLA, which had great benefit for the application of PLA. The thermal stability, fire resistance, and mechanical properties were also enhanced because of the addition of nano silica particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Poly(lactic acids) (PLAs) with different molecular weights (MWs) were prepared by autoclaving a commercial PLA for different time periods. The harvested PLAs were characterized by different techniques. Gel permeation chromatography results showed that the MW of PLA decreased with increasing autoclaving time. The Mark–Houwink parameters for PLA in dichloromethane at 25 °C were determined for the first time. The melting endotherms, revealed by differential scanning calorimetry, were observed for the 60 and 120 min-autoclaved PLAs (cf. PLA60 and PLA120) but hardly detected for the original and 30 min-autoclaved PLA (PLA30). The PLA120 exhibited higher crystallinity than that of PLA60. Thermogravimetric analysis showed that the activation energy for thermal degradation decreased from 186 kJ mol−1 to 140 kJ mol−1 for original PLA and PLA120. The hydrophilicity of the PLA increased, indicating higher number of COOH groups, with increasing autoclaving time, as revealed by the contact angle measurement. Rheological data showed that the complex viscosity and storage modulus of PLA decreased with increasing autoclaving time due to the decreasing MW. Unlike original PLA and PLA30, PLA60 and PLA120 exhibited Newtonian fluid behavior at all test frequencies.  相似文献   

5.
Summary Melting temperatureT m and enthalpy of fusion have been measured, by DSC, for folded chain crystals of low molecular weight poly(ethylene-oxide) fractions ranging from 3000 to 10000. These crystals are formed by molecules folded a small integer number,n, of times and show unusual thermal stability on heating. The rates of chain unfolding during isothermal crystal growth and subsequent heating were measured and a reliable stability criterion could be defined for folded chain polymer crystals.Extending the theoretical treatment ofFlory andVrij to folded chain crystals and usingT m data, a reasonable estimate was derived for the respective surface free energy contributions of chain ends and chain folds. The results suggest considerable hydrogen bonding between OH end groups, with a bonding energy of 3.1 Kcal/mole, when the crystal surface contains only chain ends. Hydrogen bonding is essentially destroyed by chain folding. Further analysis leads to an estimate of the contour length of cilia, associated with chain ends and to that of chain folds containing, on average, 2.8 and 3.5 monomer units respectively. Chain folds must thus be sharp involving adjacent re-entry. Finally, an analytical expression is derived showing the separate dependence ofT m on chain length andn, parameters which determine the crystal thicknessL. Critical comparison of this relationship to that commonly used for determining surface free energies from linearT m vs 1/L plots shows that the latter only applies accurately to chains of infinite length and to crystals of thickness larger than a critical valueL*.
Résumé La températureT m et l'enthalpie de fusion ont été mesurées sur des cristaux à chaines repliées de fractions de polyoxyéthyléne, de masse moléculaire variant entre 3000 et 10000. Ces cristaux sont constitués par des molécules repliées un nombren entier de fois et ils ont une stabilité thermique inhabituelle. La vitesse de dépliement des chaines a été mesurée lots de la croissance isotherme des cristaux et du chauffage consécutif et l'on a pu définir un critère de stabilité pour des cristaux à chaines repliées.En étendant la théorie deFlory etVrij aux cristaux à chaines repliées et en utilisant les valeurs deT m on a pu estimer les contributions respectives des bouts de chaine et des repliements à l'énergie libre superficielle. Les résultats suggèrent un couplage important, par liaison hydrogène entre les groupes terminaux OH lorsque la surface des cristaux est constituée entièrement de bouts de chaine, l'énergie de couplage étant de 3,1 Kcal/mole. Ce couplage disparait pratiquement par le rephement des chaines. L'analyse des résultats permet aussi d'estimer la longueur des bouts de chaines et celle des repliements qui émergent du réseau cristallin: ils sont formés, respectivement de 2,8 et 3,5 unités de monomère, en moyenne. Les repliements sont serrés et relient des positions adjacentes du réseau. On déduit finalement une expression deT m en fonction de la longueur des chaines et den, paramètres qui déterminent l'épaisseurL du cristal. La comparaison critique de cette relation avec celle généralement utilisée pour déterminer l'énergie libre superficielle, impliquant une variation linéaire deT m avec 1/L, montre que cette dernière ne s'applique en toute rigueur qu'aux chaines de longueur infinie et aux cristaux d'épaisseur supérieure à une valeur critiqueL*.
  相似文献   

6.
We performed molecular dynamics simulations of a multilayered assembly of oppositely charged polyelectrolyte chains and nanoparticles on porous substrates with cylindrical pores. The film was constructed by the sequential adsorption of oppositely charged species in a layer-by-layer fashion from dilute solutions. The multilayer assembly proceeds through surface overcharging after the completion of each deposition step. The substrate overcharging fraction fluctuates around 0.5 for nanoparticle-polyelectrolyte systems and around 0.4 for polyelectrolyte-polyelectrolyte systems. The surface coverage increases linearly with the number of deposition steps. The rate of surface coverage increases as a function of the number of deposition step changes when the pore is blocked. The closing of the pore occurs from the pore entrance for nanoparticle-polyelectrolyte systems. In the case of polyelectrolyte-polyelectrolyte systems, the pore plug is formed inside the pore and then spreads toward the pore ends.  相似文献   

7.
A new biocompatible film based on chitosan and poly(L-glutamic acid) (CS/PGA), created by alternate deposition of CS and PGA, was investigated. FT-IR spectroscopy, UV-vis spectroscopy and QCM were used to analyze the build-up process. The growth of CS and PGA deposition are both exponential to the deposition steps at first. After about 9 (CS/PGA) depositions, the exponential to linear transition takes place. QCM measurements combined with UV-vis spectra revealed the increase in the multilayer film growth at different pH (4.4, 5.0 and 5.5). The build-up of the multilayer stops after a few depositions at pH = 6.5. A muscle myoblast cell (C2C12) assay showed that (CS/PGA)(n) multilayer films obviously promote C2C12 attachment and growth.  相似文献   

8.
In this work, we describe an experimental investigation on the colloidal stability of suspensions of three kinds of particles, including magnetite, poly(lactic acid) (PLA), and composite core/shell colloids formed by a magnetite core surrounded by a PLA shell. The experiments were performed with dilute suspensions, so that recording the optical absorbance with time gives a suitable indication of the aggregation and sedimentation of the suspensions. The method allowed us to distinguish very accurately between the different surface and magnetic forces responsible for the structures acquired by particle aggregates. Thus, the pure PLA suspensions are very sensitive to ionic strength and almost unaffected by pH changes. On the contrary, the stability of magnetite systems is mainly controlled by pH. The effect of vertical magnetic fields on the stability of magnetite and magnetite/PLA suspensions is also investigated. The PLA shell reduces the magnetic responsiveness of magnetite, but it is demonstrated that the mixed particles can also form structures induced by the field, despite their lower magnetization, and they can be considered in magnetically targeted biomedical applications.  相似文献   

9.
10.
We report on the bulk and surface properties of dispersions consisting of nonstoichiometric polyelectrolyte complex (PEC) nanoparticles. PEC nanoparticles were prepared by mixing poly(l-lysine) (PLL) or poly(diallyldimethylammonium chloride) (PDADMAC) with poly(maleic acid-co-alpha-methylstyrene) (PMA-MS) or poly(maleic acid-co-propylene) (PMA-P). The monomolar mixing ratio was n-/n+ = 0.6, and the concentration ranged from 1 to 6 mmol/L. Subsequent centrifugation enabled the separation of the excess polycation, resulting in a stable coacervate phase further used in the experiments. The bulk phase parameters turbidity and hydrodynamic radius (R(h)) of the PEC nanoparticles showed a linear dependence on the total polymer content independently of the mixed polyelectrolytes. This can be interpreted by the increased collision probability of the polyelectrolyte chains when the overlap concentration is approached or exceeded. Different morphologies of the cationic PEC nanoparticles, which were solution-cast onto Si supports, were obtained by atomic force microscopy (AFM). The combinations of PLL/PMA-MS and PDADMAC/PMA-MS revealed more or less hemispherical particle shapes, whereas that of PLL/PMA-P revealed an elongated needlelike particle shape. Circular dichroism and attenuated total reflection Fourier transform infrared (ATR-FTIR) measurements proved the alpha-helical conformation for the PEC PLL/PMA-P and the random coil conformation for the PEC PLL/PMA-MS. We conclude that stiff alpha-helical PLL induces anisotropic elongated PEC nanoparticles, whereas randomly coiled PLL forms isotropic spherical PEC nanoparticles.  相似文献   

11.
The dynamic viscoelastic behavior of Poly(l‐lactic acid) (PLLA), with molecular weights ranging from 2,000 to 360,000, have been studied over a broad range of reduced frequencies (approximately 1 × 10−3 s−1 to 1 × 103 s−1), using time–temperature superposition principle. Melts are shown to have a critical molecular weight, Mc, of approximately 16,000 g/mol, and an entanglement density of 0.16 mmol/cm3 (at 25°C). PLLA polymers are noted to require substantially larger molecular weights in order to display similar melt viscoelastic behavior, at a given temperature, as that for conventional non‐biodegradable polymers such as polystyrene. The reason for this deviation is suspected to be due to steric hindrance, resulting from excessive coil expansion or other tertiary chain interactions. PLLA melts show a dependence of η0 on chain length to the 4.0 power (M), whilst J is independent of MW in the terminal region. Low molecular weight PLLA (∼ 40,000) shows Newtonian‐like behavior at shear rates typical of those achieved during film extrusion. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1803–1814, 1999  相似文献   

12.
Poly(lactic acid), PLA, was chemically modified with maleic anhydride (MA) by reactive extrusion. The effect of this modification on molar mass (MM) and acidity was assessed by means of size-exclusion chromatography (SEC) and titration, respectively. PLA MM decreased in the presence of MA solely and of MA and peroxide. Reduction in MM was monitored by the increase in acidity. PLA blends containing poly(butylene adipate-co-terephthalate) (PBAT) were prepared through different mixing protocols, PLA/PBAT, PLA-g-MA/PBAT and PLA/PBAT/MA/peroxide (PLA/PBAT in situ). SEC results and rheological properties revealed reduction in MM and viscosity of the modified blends. PLA/PBAT presented increase in MM and bimodal MM distribution. The calculated interfacial tension was significantly lower for the modified blends, despite the lower average particle area of PLA/PBAT. Surprisingly, the modified blends presented higher yield strength than that predicted by the rule of mixtures, which might indicate interfacial reactions.  相似文献   

13.
The effect of multiple (up to 10 times) extrusion of polylactide on its mechanical properties (determined by a static tension test), Charpy impact strength, melt flow rate, phase transition temperatures, degradation temperature, and permeability of water vapour and oxygen is presented. It was found that, with raising the number of the extrusion cycles, the tensile strength at break slightly diminished and the impact strength clearly decreased, while the melt flow rate and water vapour and oxygen transmission rates steadily increased. Variation of the number of extrusion cycles did not affect the glass transition temperature, whereas it did cause a lowering of the cold crystallisation temperature and slight diminishing of the melting point. The presented results indicate that PLA technological waste is suitable to be reused as an additive to a neat polymer.  相似文献   

14.
Drying dissipative patterns were observed at room temperature on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous solution of sodium salts of poly (d-glutamic acid), poly (l-glutamic acid), and their low molecular weight analogs, monosodium d-glutamate, monosodium l-glutamate, and monosodium dl-glutamate. The low molecular weight analogs were hygroscopic and their drying patterns were observed in a dry box coexisted with the bags of desiccant. The broad rings, which are the typical macroscopic drying patterns, were observed for all the samples. Optical isomeric effects on the drying patterns were not recognized. Spherulite (or hedrite) and rod-like crystals from the assemblies of helical main chains of the polymers are formed mainly at the inner area from the broad ring (except central area) and the broad ring area, respectively. Coexistence of sodium chloride enhanced the crystal structures by the cooperative interactions between the polymers and the salts. The typical dissipative crystallization such as accumulation, segregation, and orientation effects of crystals were observed in the drying patterns.  相似文献   

15.
Poly(lactic acid) (PLA) and poly(lactic/glycolic acid) copolymers (PLGA) are biodegradable drug carriers of great importance, although successful pharmaceutical application requires adjustment of the surface properties of the polymeric drug delivery system to be compatible with the biological environment. For that reason, reduction of the original hydrophobicity of the PLA or PLGA surfaces was performed by applying a hydrophilic polymer poly(ethylene oxide) (PEO) with the aim to improve biocompatibility of the original polymer. PEO-containing surfaces were prepared by incorporation of block copolymeric surfactants, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic), into the hydrophobic surface. Films of polymer blends from PLA or PLGA (with lactic/glycolic acid ratios of 75/25 and 50/50) and from Pluronics (PE6800, PE6400, and PE6100) were obtained by the solvent casting method, applying the Pluronics at different concentrations between 1 and 9.1% w/w. Wettability was measured to monitor the change in surface hydrophobicity, while X-ray photoelectron spectroscopy (XPS) was applied to determine the composition and chemical structure of the polymer surface and its change with surface modification. Substantial reduction of surface hydrophobicity was achieved on both the PLA homopolymer and the PLGA copolymers by applying the Pluronics at various concentrations. In accordance with the wettability changes the accumulation of Pluronics in the surface layer was greatly affected by the initial hydrophobicity of the polymer, namely, by the lactide content of the copolymer. The extent of surface modification was also found to be dependent on the type of blended Pluronics. Surface activity of the modifying Pluronic component was interpreted by using the solubility parameters.  相似文献   

16.
A novel PLA-based polymer containing reactive pendent ketone or hydroxyl groups was synthesized by the copolymerization of L-lactide with epsilon-caprolactone-based monomers. The polymer was activated with NPC, resulting in an amine-reactive polymer which was then cast into thin polymeric films, either alone or as part of a blend with PLGA, before immersion into a solution of the cell adhesion peptide GRGDS in PBS buffer allowed for conjugation of GRGDS to the film surfaces. Subsequent 3T3 fibroblast cell adhesion studies demonstrated an increase in cellular adhesion and spreading over films cast from unmodified PLGA. Hence the new polymer can be used to obtain covalent linkage of amine-containing molecules to polymer surfaces.  相似文献   

17.
Pyrene-loaded biodegradable polymer nanoparticles were prepared by incorporating pyrene into the polymer nanoparticles formulated from amphiphilic diblock copolymer, methoxy poly(ethylene glycol)–poly(lactic acid) (MePEG–PLA). Their morphological structure and physical properties were characterized by nuclear magnetic resonance (NMR), dynamic light scattering, fluorescence spectroscopy, transmission electronic microscopy and zeta potential measurements. Further, MePEG–PLA nanoparticles containing pyrene as fluorescent marker were administered intranasally to rats, and the distribution of nanoparticles in the nasal mucosa and the olfactory bulb were visualized by fluorescence microscopy. NMR results confirmed that MePEG–PLA copolymer can form nanoparticles in water, and hydrophilic PEG chains were located on the surface of the nanoparticles. The particle size, zeta potential and pyrene loading efficiency of MePEG–PLA nanoparticles were dependent on the PLA block content in the copolymer. Following nasal administration, the absorption of nanoparticles across the epithelium was rapid, with fluorescence observed in the olfactory bulb at 5 min, and a higher level of fluorescence persisted in the olfactory mucosa than that in the respiratory mucosa. These results show that pyrene could serve as a useful fluorescence probe for incorporation into polymer nanoparticles to study tissue distribution and MePEG–PLA nanoparticles might have a great potential as carriers of hydrophobic drugs.  相似文献   

18.
Capillary electrophoretic (CE) methods were used for the quantitative determination of model drugs [salbutamol sulphate (SS), sodium cromoglycate (SCG) and beclomethasone dipropionate (BDP)] in poly(D,L-lactic acid) (PLA) nanoparticles, which were prepared by the nanoprecipitation method. Zeta potential and size distribution of the nanoparticles were determined by electrophoretic mobility determinations and photon correlation spectroscopy, respectively. Interactions between the drugs, the PLA nanoparticles and the fused-silica capillary were investigated by electrokinetic capillary chromatography (EKC). A quantitative CE method was developed for salbutamol sulphate and sodium cromoglycate, and the linearity and repeatability of migration times, peak areas and peak heights were determined. Microemulsion electrokinetic chromatography was used for the quantitative determination of beclomethasone dipropionate. According to this study, the applied electromigration techniques were suitable for the interaction, drug entrapment and dissolution studies of pharmaceutical nanoparticles. The results suggest that even quantitation of the drug located inside the nanoparticles was possible. Encapsulation of the more hydrophilic model drugs (SS, SCG) in the PLA nanoparticles was less efficient than in the case of BDP.  相似文献   

19.
Responsive polymer microgels can be employed for the preparation of stimuli-sensitive emulsions. The microgels used in this study are based on cross-linked copolymers including N-isopropylacrylamide and methacrylic acid. We conducted the synthesis under acidic and basic conditions to investigate the effect of changes of comonomer solubility on the microgel's composition and ability to stabilize emulsions. The synthesis product was partially divided into two fractions by centrifugation. Raw product, collected supernatant, and purified microgel were characterized by means of light scattering, titration, as well as electrophoretic mobility. The ability of the three components to act as stabilizers was investigated by preparing the octanol/water emulsions and looking at their response to pH and temperature changes. The interfacial activity of the three components was characterized by means of the pendent drop technique. Furthermore, we investigated the response of the interface to dilatational stress using a pendant drop tensiometer equipped with an oscillating drop module. The results demonstrate that the pH during synthesis has a significant impact on the composition and thus the properties of the microgel and its ability to be utilized as a stimuli responsive stabilizer for emulsions. We conclude that microgels can be used as stimuli-sensitive stabilizers for emulsions, if the charges are incorporated in the microgel itself.  相似文献   

20.
Simultaneous solid‐state polycondensation (SSP) of the powdery prepolymers of poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) can produce entire stereocomplexed poly(lactic acid)s (sc‐PLA) with high molecular weight and can be an alternative synthetic route to sc‐PLA. Ordinary melt polycondensations of L ‐ and D ‐lactic acids gave the PLLA and PDLA prepolymers having medium molecular weight which were pulverized for blending in 1:1 ratio. The resultant powder blends were then subjected to SSP at 130–160 °C for 30 h under a reduced pressure of 0.5 Torr. Some of the products thus obtained attained a molecular weight (Mw) as high as 200 kDa, consisting of stereoblock copolymer of PLLA and PDLA. A small amount of the stereocomplex should be formed in the boundaries of the partially melted PLLA and PDLA where the hetero‐chain connection is induced to generate the blocky components. The resultant SSP products showed predominant stereocomplexation after their melt‐processing in the presence of the stereoblock components in spite of containing a small amount of racemic sequences in the homo‐chiral PLLA and PDLA chains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3714–3722, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号